| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem32.1 |
⊢ Ⅎ 𝑡 𝜑 |
| 2 |
|
stoweidlem32.2 |
⊢ 𝑃 = ( 𝑡 ∈ 𝑇 ↦ ( 𝑌 · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 3 |
|
stoweidlem32.3 |
⊢ 𝐹 = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 4 |
|
stoweidlem32.4 |
⊢ 𝐻 = ( 𝑡 ∈ 𝑇 ↦ 𝑌 ) |
| 5 |
|
stoweidlem32.5 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 6 |
|
stoweidlem32.6 |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 7 |
|
stoweidlem32.7 |
⊢ ( 𝜑 → 𝐺 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) |
| 8 |
|
stoweidlem32.8 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 9 |
|
stoweidlem32.9 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 10 |
|
stoweidlem32.10 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
| 11 |
|
stoweidlem32.11 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
| 12 |
|
fveq2 |
⊢ ( 𝑡 = 𝑠 → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ) |
| 13 |
12
|
sumeq2sdv |
⊢ ( 𝑡 = 𝑠 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ) |
| 14 |
13
|
cbvmptv |
⊢ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑠 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ) |
| 15 |
3 14
|
eqtri |
⊢ 𝐹 = ( 𝑠 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑠 = 𝑡 → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) = ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 17 |
16
|
sumeq2sdv |
⊢ ( 𝑠 = 𝑡 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) = Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
| 19 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 1 ... 𝑀 ) ∈ Fin ) |
| 20 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝜑 ) |
| 21 |
7
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ) |
| 22 |
|
eleq1 |
⊢ ( 𝑓 = ( 𝐺 ‘ 𝑖 ) → ( 𝑓 ∈ 𝐴 ↔ ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ) ) |
| 23 |
22
|
anbi2d |
⊢ ( 𝑓 = ( 𝐺 ‘ 𝑖 ) → ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ↔ ( 𝜑 ∧ ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ) ) ) |
| 24 |
|
feq1 |
⊢ ( 𝑓 = ( 𝐺 ‘ 𝑖 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) |
| 25 |
23 24
|
imbi12d |
⊢ ( 𝑓 = ( 𝐺 ‘ 𝑖 ) → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) ) |
| 26 |
25 11
|
vtoclg |
⊢ ( ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) |
| 27 |
21 26
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) |
| 28 |
20 21 27
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) |
| 29 |
28
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) |
| 30 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑡 ∈ 𝑇 ) |
| 31 |
29 30
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
| 32 |
19 31
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
| 33 |
15 17 18 32
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) = Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 34 |
33 32
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) |
| 35 |
34
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 36 |
|
eqidd |
⊢ ( 𝑠 = 𝑡 → 𝑌 = 𝑌 ) |
| 37 |
36
|
cbvmptv |
⊢ ( 𝑠 ∈ 𝑇 ↦ 𝑌 ) = ( 𝑡 ∈ 𝑇 ↦ 𝑌 ) |
| 38 |
4 37
|
eqtr4i |
⊢ 𝐻 = ( 𝑠 ∈ 𝑇 ↦ 𝑌 ) |
| 39 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑌 ∈ ℝ ) |
| 40 |
38 36 18 39
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑡 ) = 𝑌 ) |
| 41 |
40 39
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑡 ) ∈ ℝ ) |
| 42 |
41
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑡 ) ∈ ℂ ) |
| 43 |
35 42
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑡 ) · ( 𝐻 ‘ 𝑡 ) ) = ( ( 𝐻 ‘ 𝑡 ) · ( 𝐹 ‘ 𝑡 ) ) ) |
| 44 |
40 33
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐻 ‘ 𝑡 ) · ( 𝐹 ‘ 𝑡 ) ) = ( 𝑌 · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 45 |
43 44
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑌 · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( ( 𝐹 ‘ 𝑡 ) · ( 𝐻 ‘ 𝑡 ) ) ) |
| 46 |
1 45
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( 𝑌 · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) · ( 𝐻 ‘ 𝑡 ) ) ) ) |
| 47 |
2 46
|
eqtrid |
⊢ ( 𝜑 → 𝑃 = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) · ( 𝐻 ‘ 𝑡 ) ) ) ) |
| 48 |
1 3 5 7 8 11
|
stoweidlem20 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |
| 49 |
10
|
stoweidlem4 |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑌 ) ∈ 𝐴 ) |
| 50 |
6 49
|
mpdan |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 𝑌 ) ∈ 𝐴 ) |
| 51 |
4 50
|
eqeltrid |
⊢ ( 𝜑 → 𝐻 ∈ 𝐴 ) |
| 52 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 53 |
3 52
|
nfcxfr |
⊢ Ⅎ 𝑡 𝐹 |
| 54 |
53
|
nfeq2 |
⊢ Ⅎ 𝑡 𝑓 = 𝐹 |
| 55 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ 𝑌 ) |
| 56 |
4 55
|
nfcxfr |
⊢ Ⅎ 𝑡 𝐻 |
| 57 |
56
|
nfeq2 |
⊢ Ⅎ 𝑡 𝑔 = 𝐻 |
| 58 |
54 57 9
|
stoweidlem6 |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) · ( 𝐻 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 59 |
48 51 58
|
mpd3an23 |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) · ( 𝐻 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 60 |
47 59
|
eqeltrd |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |