Metamath Proof Explorer


Theorem stoweidlem32

Description: If a set A of real functions from a common domain T is a subalgebra and it contains constants, then it is closed under the sum of a finite number of functions, indexed by G and finally scaled by a real Y. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem32.1 𝑡 𝜑
stoweidlem32.2 𝑃 = ( 𝑡𝑇 ↦ ( 𝑌 · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑡 ) ) )
stoweidlem32.3 𝐹 = ( 𝑡𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑡 ) )
stoweidlem32.4 𝐻 = ( 𝑡𝑇𝑌 )
stoweidlem32.5 ( 𝜑𝑀 ∈ ℕ )
stoweidlem32.6 ( 𝜑𝑌 ∈ ℝ )
stoweidlem32.7 ( 𝜑𝐺 : ( 1 ... 𝑀 ) ⟶ 𝐴 )
stoweidlem32.8 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) + ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
stoweidlem32.9 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
stoweidlem32.10 ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝑡𝑇𝑥 ) ∈ 𝐴 )
stoweidlem32.11 ( ( 𝜑𝑓𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ )
Assertion stoweidlem32 ( 𝜑𝑃𝐴 )

Proof

Step Hyp Ref Expression
1 stoweidlem32.1 𝑡 𝜑
2 stoweidlem32.2 𝑃 = ( 𝑡𝑇 ↦ ( 𝑌 · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑡 ) ) )
3 stoweidlem32.3 𝐹 = ( 𝑡𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑡 ) )
4 stoweidlem32.4 𝐻 = ( 𝑡𝑇𝑌 )
5 stoweidlem32.5 ( 𝜑𝑀 ∈ ℕ )
6 stoweidlem32.6 ( 𝜑𝑌 ∈ ℝ )
7 stoweidlem32.7 ( 𝜑𝐺 : ( 1 ... 𝑀 ) ⟶ 𝐴 )
8 stoweidlem32.8 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) + ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
9 stoweidlem32.9 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
10 stoweidlem32.10 ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝑡𝑇𝑥 ) ∈ 𝐴 )
11 stoweidlem32.11 ( ( 𝜑𝑓𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ )
12 fveq2 ( 𝑡 = 𝑠 → ( ( 𝐺𝑖 ) ‘ 𝑡 ) = ( ( 𝐺𝑖 ) ‘ 𝑠 ) )
13 12 sumeq2sdv ( 𝑡 = 𝑠 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑠 ) )
14 13 cbvmptv ( 𝑡𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑡 ) ) = ( 𝑠𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑠 ) )
15 3 14 eqtri 𝐹 = ( 𝑠𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑠 ) )
16 fveq2 ( 𝑠 = 𝑡 → ( ( 𝐺𝑖 ) ‘ 𝑠 ) = ( ( 𝐺𝑖 ) ‘ 𝑡 ) )
17 16 sumeq2sdv ( 𝑠 = 𝑡 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑠 ) = Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑡 ) )
18 simpr ( ( 𝜑𝑡𝑇 ) → 𝑡𝑇 )
19 fzfid ( ( 𝜑𝑡𝑇 ) → ( 1 ... 𝑀 ) ∈ Fin )
20 simpl ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝜑 )
21 7 ffvelrnda ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺𝑖 ) ∈ 𝐴 )
22 eleq1 ( 𝑓 = ( 𝐺𝑖 ) → ( 𝑓𝐴 ↔ ( 𝐺𝑖 ) ∈ 𝐴 ) )
23 22 anbi2d ( 𝑓 = ( 𝐺𝑖 ) → ( ( 𝜑𝑓𝐴 ) ↔ ( 𝜑 ∧ ( 𝐺𝑖 ) ∈ 𝐴 ) ) )
24 feq1 ( 𝑓 = ( 𝐺𝑖 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝐺𝑖 ) : 𝑇 ⟶ ℝ ) )
25 23 24 imbi12d ( 𝑓 = ( 𝐺𝑖 ) → ( ( ( 𝜑𝑓𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝐺𝑖 ) ∈ 𝐴 ) → ( 𝐺𝑖 ) : 𝑇 ⟶ ℝ ) ) )
26 25 11 vtoclg ( ( 𝐺𝑖 ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝐺𝑖 ) ∈ 𝐴 ) → ( 𝐺𝑖 ) : 𝑇 ⟶ ℝ ) )
27 21 26 syl ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝜑 ∧ ( 𝐺𝑖 ) ∈ 𝐴 ) → ( 𝐺𝑖 ) : 𝑇 ⟶ ℝ ) )
28 20 21 27 mp2and ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺𝑖 ) : 𝑇 ⟶ ℝ )
29 28 adantlr ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺𝑖 ) : 𝑇 ⟶ ℝ )
30 simplr ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑡𝑇 )
31 29 30 ffvelrnd ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺𝑖 ) ‘ 𝑡 ) ∈ ℝ )
32 19 31 fsumrecl ( ( 𝜑𝑡𝑇 ) → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑡 ) ∈ ℝ )
33 15 17 18 32 fvmptd3 ( ( 𝜑𝑡𝑇 ) → ( 𝐹𝑡 ) = Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑡 ) )
34 33 32 eqeltrd ( ( 𝜑𝑡𝑇 ) → ( 𝐹𝑡 ) ∈ ℝ )
35 34 recnd ( ( 𝜑𝑡𝑇 ) → ( 𝐹𝑡 ) ∈ ℂ )
36 eqidd ( 𝑠 = 𝑡𝑌 = 𝑌 )
37 36 cbvmptv ( 𝑠𝑇𝑌 ) = ( 𝑡𝑇𝑌 )
38 4 37 eqtr4i 𝐻 = ( 𝑠𝑇𝑌 )
39 6 adantr ( ( 𝜑𝑡𝑇 ) → 𝑌 ∈ ℝ )
40 38 36 18 39 fvmptd3 ( ( 𝜑𝑡𝑇 ) → ( 𝐻𝑡 ) = 𝑌 )
41 40 39 eqeltrd ( ( 𝜑𝑡𝑇 ) → ( 𝐻𝑡 ) ∈ ℝ )
42 41 recnd ( ( 𝜑𝑡𝑇 ) → ( 𝐻𝑡 ) ∈ ℂ )
43 35 42 mulcomd ( ( 𝜑𝑡𝑇 ) → ( ( 𝐹𝑡 ) · ( 𝐻𝑡 ) ) = ( ( 𝐻𝑡 ) · ( 𝐹𝑡 ) ) )
44 40 33 oveq12d ( ( 𝜑𝑡𝑇 ) → ( ( 𝐻𝑡 ) · ( 𝐹𝑡 ) ) = ( 𝑌 · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑡 ) ) )
45 43 44 eqtr2d ( ( 𝜑𝑡𝑇 ) → ( 𝑌 · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑡 ) ) = ( ( 𝐹𝑡 ) · ( 𝐻𝑡 ) ) )
46 1 45 mpteq2da ( 𝜑 → ( 𝑡𝑇 ↦ ( 𝑌 · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑡 ) ) ) = ( 𝑡𝑇 ↦ ( ( 𝐹𝑡 ) · ( 𝐻𝑡 ) ) ) )
47 2 46 eqtrid ( 𝜑𝑃 = ( 𝑡𝑇 ↦ ( ( 𝐹𝑡 ) · ( 𝐻𝑡 ) ) ) )
48 1 3 5 7 8 11 stoweidlem20 ( 𝜑𝐹𝐴 )
49 10 stoweidlem4 ( ( 𝜑𝑌 ∈ ℝ ) → ( 𝑡𝑇𝑌 ) ∈ 𝐴 )
50 6 49 mpdan ( 𝜑 → ( 𝑡𝑇𝑌 ) ∈ 𝐴 )
51 4 50 eqeltrid ( 𝜑𝐻𝐴 )
52 nfmpt1 𝑡 ( 𝑡𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑡 ) )
53 3 52 nfcxfr 𝑡 𝐹
54 53 nfeq2 𝑡 𝑓 = 𝐹
55 nfmpt1 𝑡 ( 𝑡𝑇𝑌 )
56 4 55 nfcxfr 𝑡 𝐻
57 56 nfeq2 𝑡 𝑔 = 𝐻
58 54 57 9 stoweidlem6 ( ( 𝜑𝐹𝐴𝐻𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝐹𝑡 ) · ( 𝐻𝑡 ) ) ) ∈ 𝐴 )
59 48 51 58 mpd3an23 ( 𝜑 → ( 𝑡𝑇 ↦ ( ( 𝐹𝑡 ) · ( 𝐻𝑡 ) ) ) ∈ 𝐴 )
60 47 59 eqeltrd ( 𝜑𝑃𝐴 )