| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem33.1 |
⊢ Ⅎ 𝑡 𝐹 |
| 2 |
|
stoweidlem33.2 |
⊢ Ⅎ 𝑡 𝐺 |
| 3 |
|
stoweidlem33.3 |
⊢ Ⅎ 𝑡 𝜑 |
| 4 |
|
stoweidlem33.4 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
| 5 |
|
stoweidlem33.5 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 6 |
|
stoweidlem33.6 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 7 |
|
stoweidlem33.7 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
| 8 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐺 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐺 ‘ 𝑡 ) ) ) |
| 9 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ - 1 ) = ( 𝑡 ∈ 𝑇 ↦ - 1 ) |
| 10 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ - 1 ) ‘ 𝑡 ) · ( 𝐺 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ - 1 ) ‘ 𝑡 ) · ( 𝐺 ‘ 𝑡 ) ) ) |
| 11 |
3 1 2 8 9 10 4 5 6 7
|
stoweidlem22 |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐺 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |