| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem34.1 |
⊢ Ⅎ 𝑡 𝐹 |
| 2 |
|
stoweidlem34.2 |
⊢ Ⅎ 𝑗 𝜑 |
| 3 |
|
stoweidlem34.3 |
⊢ Ⅎ 𝑡 𝜑 |
| 4 |
|
stoweidlem34.4 |
⊢ 𝐷 = ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 5 |
|
stoweidlem34.5 |
⊢ 𝐵 = ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ { 𝑡 ∈ 𝑇 ∣ ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ≤ ( 𝐹 ‘ 𝑡 ) } ) |
| 6 |
|
stoweidlem34.6 |
⊢ 𝐽 = ( 𝑡 ∈ 𝑇 ↦ { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) } ) |
| 7 |
|
stoweidlem34.7 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 8 |
|
stoweidlem34.8 |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
| 9 |
|
stoweidlem34.9 |
⊢ ( 𝜑 → 𝐹 : 𝑇 ⟶ ℝ ) |
| 10 |
|
stoweidlem34.10 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( 𝐹 ‘ 𝑡 ) ) |
| 11 |
|
stoweidlem34.11 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) < ( ( 𝑁 − 1 ) · 𝐸 ) ) |
| 12 |
|
stoweidlem34.12 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 13 |
|
stoweidlem34.13 |
⊢ ( 𝜑 → 𝐸 < ( 1 / 3 ) ) |
| 14 |
|
stoweidlem34.14 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑋 ‘ 𝑗 ) : 𝑇 ⟶ ℝ ) |
| 15 |
|
stoweidlem34.15 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 ) ) |
| 16 |
|
stoweidlem34.16 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) |
| 17 |
|
stoweidlem34.17 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) → ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑁 ) ) |
| 18 |
|
stoweidlem34.18 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ) → ( 1 − ( 𝐸 / 𝑁 ) ) < ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 ) ) |
| 19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
| 20 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
| 21 |
20
|
rabex |
⊢ { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) } ∈ V |
| 22 |
6
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) } ∈ V ) → ( 𝐽 ‘ 𝑡 ) = { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) } ) |
| 23 |
19 21 22
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐽 ‘ 𝑡 ) = { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) } ) |
| 24 |
|
ssrab2 |
⊢ { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) } ⊆ ( 1 ... 𝑁 ) |
| 25 |
23 24
|
eqsstrdi |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐽 ‘ 𝑡 ) ⊆ ( 1 ... 𝑁 ) ) |
| 26 |
|
elfznn |
⊢ ( 𝑥 ∈ ( 1 ... 𝑁 ) → 𝑥 ∈ ℕ ) |
| 27 |
26
|
ssriv |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
| 28 |
25 27
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐽 ‘ 𝑡 ) ⊆ ℕ ) |
| 29 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
| 30 |
28 29
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐽 ‘ 𝑡 ) ⊆ ℝ ) |
| 31 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑁 ∈ ℕ ) |
| 32 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 33 |
31 32
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 34 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
| 35 |
33 34
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
| 36 |
|
3re |
⊢ 3 ∈ ℝ |
| 37 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 38 |
36 37
|
rereccli |
⊢ ( 1 / 3 ) ∈ ℝ |
| 39 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 1 / 3 ) ∈ ℝ ) |
| 40 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 1 ∈ ℝ ) |
| 41 |
31
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑁 ∈ ℝ ) |
| 42 |
|
1lt3 |
⊢ 1 < 3 |
| 43 |
36 42
|
pm3.2i |
⊢ ( 3 ∈ ℝ ∧ 1 < 3 ) |
| 44 |
|
recgt1i |
⊢ ( ( 3 ∈ ℝ ∧ 1 < 3 ) → ( 0 < ( 1 / 3 ) ∧ ( 1 / 3 ) < 1 ) ) |
| 45 |
44
|
simprd |
⊢ ( ( 3 ∈ ℝ ∧ 1 < 3 ) → ( 1 / 3 ) < 1 ) |
| 46 |
43 45
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 1 / 3 ) < 1 ) |
| 47 |
39 40 41 46
|
ltsub2dd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑁 − 1 ) < ( 𝑁 − ( 1 / 3 ) ) ) |
| 48 |
41 40
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑁 − 1 ) ∈ ℝ ) |
| 49 |
41 39
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑁 − ( 1 / 3 ) ) ∈ ℝ ) |
| 50 |
12
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝐸 ∈ ℝ ) |
| 52 |
12
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝐸 ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 0 < 𝐸 ) |
| 54 |
|
ltmul1 |
⊢ ( ( ( 𝑁 − 1 ) ∈ ℝ ∧ ( 𝑁 − ( 1 / 3 ) ) ∈ ℝ ∧ ( 𝐸 ∈ ℝ ∧ 0 < 𝐸 ) ) → ( ( 𝑁 − 1 ) < ( 𝑁 − ( 1 / 3 ) ) ↔ ( ( 𝑁 − 1 ) · 𝐸 ) < ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 55 |
48 49 51 53 54
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑁 − 1 ) < ( 𝑁 − ( 1 / 3 ) ) ↔ ( ( 𝑁 − 1 ) · 𝐸 ) < ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 56 |
47 55
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑁 − 1 ) · 𝐸 ) < ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) ) |
| 57 |
11 56
|
jca |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑡 ) < ( ( 𝑁 − 1 ) · 𝐸 ) ∧ ( ( 𝑁 − 1 ) · 𝐸 ) < ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 58 |
9
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) |
| 59 |
48 51
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑁 − 1 ) · 𝐸 ) ∈ ℝ ) |
| 60 |
49 51
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) ∈ ℝ ) |
| 61 |
|
lttr |
⊢ ( ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ ( ( 𝑁 − 1 ) · 𝐸 ) ∈ ℝ ∧ ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑡 ) < ( ( 𝑁 − 1 ) · 𝐸 ) ∧ ( ( 𝑁 − 1 ) · 𝐸 ) < ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) ) → ( 𝐹 ‘ 𝑡 ) < ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 62 |
|
ltle |
⊢ ( ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑡 ) < ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) → ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 63 |
62
|
3adant2 |
⊢ ( ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ ( ( 𝑁 − 1 ) · 𝐸 ) ∈ ℝ ∧ ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑡 ) < ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) → ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 64 |
61 63
|
syld |
⊢ ( ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ ( ( 𝑁 − 1 ) · 𝐸 ) ∈ ℝ ∧ ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑡 ) < ( ( 𝑁 − 1 ) · 𝐸 ) ∧ ( ( 𝑁 − 1 ) · 𝐸 ) < ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) ) → ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 65 |
58 59 60 64
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( ( 𝐹 ‘ 𝑡 ) < ( ( 𝑁 − 1 ) · 𝐸 ) ∧ ( ( 𝑁 − 1 ) · 𝐸 ) < ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) ) → ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 66 |
57 65
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) ) |
| 67 |
|
rabid |
⊢ ( 𝑡 ∈ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) } ↔ ( 𝑡 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 68 |
19 66 67
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 69 |
|
oveq1 |
⊢ ( 𝑗 = 𝑁 → ( 𝑗 − ( 1 / 3 ) ) = ( 𝑁 − ( 1 / 3 ) ) ) |
| 70 |
69
|
oveq1d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) = ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) ) |
| 71 |
70
|
breq2d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ↔ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 72 |
71
|
rabbidv |
⊢ ( 𝑗 = 𝑁 → { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) } = { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 73 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 74 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 75 |
73 74
|
eleqtrdi |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 76 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 77 |
7 75 76
|
3syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 78 |
|
rabexg |
⊢ ( 𝑇 ∈ V → { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) } ∈ V ) |
| 79 |
8 78
|
syl |
⊢ ( 𝜑 → { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) } ∈ V ) |
| 80 |
4 72 77 79
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑁 ) = { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐷 ‘ 𝑁 ) = { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑁 − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 82 |
68 81
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ ( 𝐷 ‘ 𝑁 ) ) |
| 83 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑁 |
| 84 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 1 ... 𝑁 ) |
| 85 |
|
nfmpt1 |
⊢ Ⅎ 𝑗 ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 86 |
4 85
|
nfcxfr |
⊢ Ⅎ 𝑗 𝐷 |
| 87 |
86 83
|
nffv |
⊢ Ⅎ 𝑗 ( 𝐷 ‘ 𝑁 ) |
| 88 |
87
|
nfcri |
⊢ Ⅎ 𝑗 𝑡 ∈ ( 𝐷 ‘ 𝑁 ) |
| 89 |
|
fveq2 |
⊢ ( 𝑗 = 𝑁 → ( 𝐷 ‘ 𝑗 ) = ( 𝐷 ‘ 𝑁 ) ) |
| 90 |
89
|
eleq2d |
⊢ ( 𝑗 = 𝑁 → ( 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ↔ 𝑡 ∈ ( 𝐷 ‘ 𝑁 ) ) ) |
| 91 |
83 84 88 90
|
elrabf |
⊢ ( 𝑁 ∈ { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) } ↔ ( 𝑁 ∈ ( 1 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑁 ) ) ) |
| 92 |
35 82 91
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑁 ∈ { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) } ) |
| 93 |
92 23
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑁 ∈ ( 𝐽 ‘ 𝑡 ) ) |
| 94 |
|
ne0i |
⊢ ( 𝑁 ∈ ( 𝐽 ‘ 𝑡 ) → ( 𝐽 ‘ 𝑡 ) ≠ ∅ ) |
| 95 |
93 94
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐽 ‘ 𝑡 ) ≠ ∅ ) |
| 96 |
|
nnwo |
⊢ ( ( ( 𝐽 ‘ 𝑡 ) ⊆ ℕ ∧ ( 𝐽 ‘ 𝑡 ) ≠ ∅ ) → ∃ 𝑖 ∈ ( 𝐽 ‘ 𝑡 ) ∀ 𝑘 ∈ ( 𝐽 ‘ 𝑡 ) 𝑖 ≤ 𝑘 ) |
| 97 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝐽 ‘ 𝑡 ) |
| 98 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑇 |
| 99 |
|
nfrab1 |
⊢ Ⅎ 𝑗 { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) } |
| 100 |
98 99
|
nfmpt |
⊢ Ⅎ 𝑗 ( 𝑡 ∈ 𝑇 ↦ { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) } ) |
| 101 |
6 100
|
nfcxfr |
⊢ Ⅎ 𝑗 𝐽 |
| 102 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑡 |
| 103 |
101 102
|
nffv |
⊢ Ⅎ 𝑗 ( 𝐽 ‘ 𝑡 ) |
| 104 |
|
nfv |
⊢ Ⅎ 𝑗 𝑖 ≤ 𝑘 |
| 105 |
103 104
|
nfralw |
⊢ Ⅎ 𝑗 ∀ 𝑘 ∈ ( 𝐽 ‘ 𝑡 ) 𝑖 ≤ 𝑘 |
| 106 |
|
nfv |
⊢ Ⅎ 𝑖 ∀ 𝑘 ∈ ( 𝐽 ‘ 𝑡 ) 𝑗 ≤ 𝑘 |
| 107 |
|
breq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 ≤ 𝑘 ↔ 𝑗 ≤ 𝑘 ) ) |
| 108 |
107
|
ralbidv |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑘 ∈ ( 𝐽 ‘ 𝑡 ) 𝑖 ≤ 𝑘 ↔ ∀ 𝑘 ∈ ( 𝐽 ‘ 𝑡 ) 𝑗 ≤ 𝑘 ) ) |
| 109 |
97 103 105 106 108
|
cbvrexfw |
⊢ ( ∃ 𝑖 ∈ ( 𝐽 ‘ 𝑡 ) ∀ 𝑘 ∈ ( 𝐽 ‘ 𝑡 ) 𝑖 ≤ 𝑘 ↔ ∃ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∀ 𝑘 ∈ ( 𝐽 ‘ 𝑡 ) 𝑗 ≤ 𝑘 ) |
| 110 |
96 109
|
sylib |
⊢ ( ( ( 𝐽 ‘ 𝑡 ) ⊆ ℕ ∧ ( 𝐽 ‘ 𝑡 ) ≠ ∅ ) → ∃ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∀ 𝑘 ∈ ( 𝐽 ‘ 𝑡 ) 𝑗 ≤ 𝑘 ) |
| 111 |
28 95 110
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ∃ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∀ 𝑘 ∈ ( 𝐽 ‘ 𝑡 ) 𝑗 ≤ 𝑘 ) |
| 112 |
|
nfv |
⊢ Ⅎ 𝑗 𝑡 ∈ 𝑇 |
| 113 |
2 112
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) |
| 114 |
23
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ↔ 𝑗 ∈ { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) } ) ) |
| 115 |
114
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) → 𝑗 ∈ { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) } ) |
| 116 |
|
rabid |
⊢ ( 𝑗 ∈ { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) } ↔ ( 𝑗 ∈ ( 1 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ) |
| 117 |
115 116
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ) |
| 118 |
117
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) → 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) |
| 119 |
118
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ ∀ 𝑘 ∈ ( 𝐽 ‘ 𝑡 ) 𝑗 ≤ 𝑘 ) → 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) |
| 120 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) → 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) |
| 121 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) → 𝜑 ) |
| 122 |
|
noel |
⊢ ¬ 𝑡 ∈ ∅ |
| 123 |
|
oveq1 |
⊢ ( 𝑗 = 1 → ( 𝑗 − 1 ) = ( 1 − 1 ) ) |
| 124 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 125 |
123 124
|
eqtrdi |
⊢ ( 𝑗 = 1 → ( 𝑗 − 1 ) = 0 ) |
| 126 |
125
|
fveq2d |
⊢ ( 𝑗 = 1 → ( 𝐷 ‘ ( 𝑗 − 1 ) ) = ( 𝐷 ‘ 0 ) ) |
| 127 |
36
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 3 ∈ ℝ ) |
| 128 |
37
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 3 ≠ 0 ) |
| 129 |
40 127 128
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 1 / 3 ) ∈ ℝ ) |
| 130 |
129
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → - ( 1 / 3 ) ∈ ℝ ) |
| 131 |
130 51
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( - ( 1 / 3 ) · 𝐸 ) ∈ ℝ ) |
| 132 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 0 ∈ ℝ ) |
| 133 |
|
3pos |
⊢ 0 < 3 |
| 134 |
36 133
|
recgt0ii |
⊢ 0 < ( 1 / 3 ) |
| 135 |
|
lt0neg2 |
⊢ ( ( 1 / 3 ) ∈ ℝ → ( 0 < ( 1 / 3 ) ↔ - ( 1 / 3 ) < 0 ) ) |
| 136 |
38 135
|
ax-mp |
⊢ ( 0 < ( 1 / 3 ) ↔ - ( 1 / 3 ) < 0 ) |
| 137 |
134 136
|
mpbi |
⊢ - ( 1 / 3 ) < 0 |
| 138 |
|
ltmul1 |
⊢ ( ( - ( 1 / 3 ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( 𝐸 ∈ ℝ ∧ 0 < 𝐸 ) ) → ( - ( 1 / 3 ) < 0 ↔ ( - ( 1 / 3 ) · 𝐸 ) < ( 0 · 𝐸 ) ) ) |
| 139 |
130 132 51 53 138
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( - ( 1 / 3 ) < 0 ↔ ( - ( 1 / 3 ) · 𝐸 ) < ( 0 · 𝐸 ) ) ) |
| 140 |
137 139
|
mpbii |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( - ( 1 / 3 ) · 𝐸 ) < ( 0 · 𝐸 ) ) |
| 141 |
|
mul02lem2 |
⊢ ( 𝐸 ∈ ℝ → ( 0 · 𝐸 ) = 0 ) |
| 142 |
51 141
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 0 · 𝐸 ) = 0 ) |
| 143 |
140 142
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( - ( 1 / 3 ) · 𝐸 ) < 0 ) |
| 144 |
131 132 58 143 10
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( - ( 1 / 3 ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ) |
| 145 |
131 58
|
ltnled |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( - ( 1 / 3 ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ↔ ¬ ( 𝐹 ‘ 𝑡 ) ≤ ( - ( 1 / 3 ) · 𝐸 ) ) ) |
| 146 |
144 145
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ¬ ( 𝐹 ‘ 𝑡 ) ≤ ( - ( 1 / 3 ) · 𝐸 ) ) |
| 147 |
|
nan |
⊢ ( ( 𝜑 → ¬ ( 𝑡 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( - ( 1 / 3 ) · 𝐸 ) ) ) ↔ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ¬ ( 𝐹 ‘ 𝑡 ) ≤ ( - ( 1 / 3 ) · 𝐸 ) ) ) |
| 148 |
146 147
|
mpbir |
⊢ ( 𝜑 → ¬ ( 𝑡 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( - ( 1 / 3 ) · 𝐸 ) ) ) |
| 149 |
|
rabid |
⊢ ( 𝑡 ∈ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( - ( 1 / 3 ) · 𝐸 ) } ↔ ( 𝑡 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( - ( 1 / 3 ) · 𝐸 ) ) ) |
| 150 |
148 149
|
sylnibr |
⊢ ( 𝜑 → ¬ 𝑡 ∈ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( - ( 1 / 3 ) · 𝐸 ) } ) |
| 151 |
|
oveq1 |
⊢ ( 𝑗 = 0 → ( 𝑗 − ( 1 / 3 ) ) = ( 0 − ( 1 / 3 ) ) ) |
| 152 |
|
df-neg |
⊢ - ( 1 / 3 ) = ( 0 − ( 1 / 3 ) ) |
| 153 |
151 152
|
eqtr4di |
⊢ ( 𝑗 = 0 → ( 𝑗 − ( 1 / 3 ) ) = - ( 1 / 3 ) ) |
| 154 |
153
|
oveq1d |
⊢ ( 𝑗 = 0 → ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) = ( - ( 1 / 3 ) · 𝐸 ) ) |
| 155 |
154
|
breq2d |
⊢ ( 𝑗 = 0 → ( ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ↔ ( 𝐹 ‘ 𝑡 ) ≤ ( - ( 1 / 3 ) · 𝐸 ) ) ) |
| 156 |
155
|
rabbidv |
⊢ ( 𝑗 = 0 → { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) } = { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( - ( 1 / 3 ) · 𝐸 ) } ) |
| 157 |
7
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 158 |
|
elnn0uz |
⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 159 |
157 158
|
sylib |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 160 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 𝑁 ) ) |
| 161 |
159 160
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑁 ) ) |
| 162 |
|
rabexg |
⊢ ( 𝑇 ∈ V → { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( - ( 1 / 3 ) · 𝐸 ) } ∈ V ) |
| 163 |
8 162
|
syl |
⊢ ( 𝜑 → { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( - ( 1 / 3 ) · 𝐸 ) } ∈ V ) |
| 164 |
4 156 161 163
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐷 ‘ 0 ) = { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( - ( 1 / 3 ) · 𝐸 ) } ) |
| 165 |
150 164
|
neleqtrrd |
⊢ ( 𝜑 → ¬ 𝑡 ∈ ( 𝐷 ‘ 0 ) ) |
| 166 |
3 165
|
alrimi |
⊢ ( 𝜑 → ∀ 𝑡 ¬ 𝑡 ∈ ( 𝐷 ‘ 0 ) ) |
| 167 |
|
nfcv |
⊢ Ⅎ 𝑡 ( 0 ... 𝑁 ) |
| 168 |
|
nfrab1 |
⊢ Ⅎ 𝑡 { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) } |
| 169 |
167 168
|
nfmpt |
⊢ Ⅎ 𝑡 ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 170 |
4 169
|
nfcxfr |
⊢ Ⅎ 𝑡 𝐷 |
| 171 |
|
nfcv |
⊢ Ⅎ 𝑡 0 |
| 172 |
170 171
|
nffv |
⊢ Ⅎ 𝑡 ( 𝐷 ‘ 0 ) |
| 173 |
172
|
eq0f |
⊢ ( ( 𝐷 ‘ 0 ) = ∅ ↔ ∀ 𝑡 ¬ 𝑡 ∈ ( 𝐷 ‘ 0 ) ) |
| 174 |
166 173
|
sylibr |
⊢ ( 𝜑 → ( 𝐷 ‘ 0 ) = ∅ ) |
| 175 |
126 174
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑗 = 1 ) → ( 𝐷 ‘ ( 𝑗 − 1 ) ) = ∅ ) |
| 176 |
175
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑗 = 1 ) → ( 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ↔ 𝑡 ∈ ∅ ) ) |
| 177 |
122 176
|
mtbiri |
⊢ ( ( 𝜑 ∧ 𝑗 = 1 ) → ¬ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) |
| 178 |
177
|
ex |
⊢ ( 𝜑 → ( 𝑗 = 1 → ¬ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) |
| 179 |
178
|
con2d |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) → ¬ 𝑗 = 1 ) ) |
| 180 |
121 120 179
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) → ¬ 𝑗 = 1 ) |
| 181 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ ¬ 𝑗 = 1 ) → 𝜑 ) |
| 182 |
114 116
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ↔ ( 𝑗 ∈ ( 1 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ) ) |
| 183 |
182
|
simprbda |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) → 𝑗 ∈ ( 1 ... 𝑁 ) ) |
| 184 |
7 32
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 185 |
184
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 186 |
|
elfzp12 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑗 = 1 ∨ 𝑗 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) ) ) |
| 187 |
185 186
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑗 = 1 ∨ 𝑗 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) ) ) |
| 188 |
187
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑗 = 1 ∨ 𝑗 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) ) ) |
| 189 |
183 188
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) → ( 𝑗 = 1 ∨ 𝑗 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) ) |
| 190 |
189
|
orcanai |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ ¬ 𝑗 = 1 ) → 𝑗 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) |
| 191 |
|
fzssp1 |
⊢ ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) |
| 192 |
7
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 193 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 194 |
192 193
|
npcand |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 195 |
194
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 1 ... 𝑁 ) ) |
| 196 |
191 195
|
sseqtrid |
⊢ ( 𝜑 → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
| 197 |
196
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
| 198 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → 𝑗 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) |
| 199 |
|
1z |
⊢ 1 ∈ ℤ |
| 200 |
|
zaddcl |
⊢ ( ( 1 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 1 + 1 ) ∈ ℤ ) |
| 201 |
199 199 200
|
mp2an |
⊢ ( 1 + 1 ) ∈ ℤ |
| 202 |
201
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ( 1 + 1 ) ∈ ℤ ) |
| 203 |
7
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 204 |
203
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → 𝑁 ∈ ℤ ) |
| 205 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( ( 1 + 1 ) ... 𝑁 ) → 𝑗 ∈ ℤ ) |
| 206 |
205
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → 𝑗 ∈ ℤ ) |
| 207 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → 1 ∈ ℤ ) |
| 208 |
|
fzsubel |
⊢ ( ( ( ( 1 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑗 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑗 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↔ ( 𝑗 − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) ) |
| 209 |
202 204 206 207 208
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ( 𝑗 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↔ ( 𝑗 − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) ) |
| 210 |
198 209
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ( 𝑗 − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) |
| 211 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 212 |
211 211
|
pncan3oi |
⊢ ( ( 1 + 1 ) − 1 ) = 1 |
| 213 |
212
|
oveq1i |
⊢ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) = ( 1 ... ( 𝑁 − 1 ) ) |
| 214 |
210 213
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ( 𝑗 − 1 ) ∈ ( 1 ... ( 𝑁 − 1 ) ) ) |
| 215 |
197 214
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ( 𝑗 − 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 216 |
181 190 215
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ ¬ 𝑗 = 1 ) → ( 𝑗 − 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 217 |
216
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) → ( ¬ 𝑗 = 1 → ( 𝑗 − 1 ) ∈ ( 1 ... 𝑁 ) ) ) |
| 218 |
217
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) → ( ¬ 𝑗 = 1 → ( 𝑗 − 1 ) ∈ ( 1 ... 𝑁 ) ) ) |
| 219 |
180 218
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) → ( 𝑗 − 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 220 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑗 − 1 ) → ( 𝐷 ‘ 𝑖 ) = ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) |
| 221 |
220
|
eleq2d |
⊢ ( 𝑖 = ( 𝑗 − 1 ) → ( 𝑡 ∈ ( 𝐷 ‘ 𝑖 ) ↔ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) |
| 222 |
221
|
elrab3 |
⊢ ( ( 𝑗 − 1 ) ∈ ( 1 ... 𝑁 ) → ( ( 𝑗 − 1 ) ∈ { 𝑖 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑖 ) } ↔ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) |
| 223 |
219 222
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) → ( ( 𝑗 − 1 ) ∈ { 𝑖 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑖 ) } ↔ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) |
| 224 |
120 223
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) → ( 𝑗 − 1 ) ∈ { 𝑖 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑖 ) } ) |
| 225 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 1 ... 𝑁 ) |
| 226 |
|
nfv |
⊢ Ⅎ 𝑖 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) |
| 227 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑖 |
| 228 |
86 227
|
nffv |
⊢ Ⅎ 𝑗 ( 𝐷 ‘ 𝑖 ) |
| 229 |
228
|
nfcri |
⊢ Ⅎ 𝑗 𝑡 ∈ ( 𝐷 ‘ 𝑖 ) |
| 230 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝐷 ‘ 𝑗 ) = ( 𝐷 ‘ 𝑖 ) ) |
| 231 |
230
|
eleq2d |
⊢ ( 𝑗 = 𝑖 → ( 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ↔ 𝑡 ∈ ( 𝐷 ‘ 𝑖 ) ) ) |
| 232 |
84 225 226 229 231
|
cbvrabw |
⊢ { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) } = { 𝑖 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑖 ) } |
| 233 |
224 232
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) → ( 𝑗 − 1 ) ∈ { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) } ) |
| 234 |
23
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) → ( 𝐽 ‘ 𝑡 ) = { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) } ) |
| 235 |
233 234
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) → ( 𝑗 − 1 ) ∈ ( 𝐽 ‘ 𝑡 ) ) |
| 236 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 1 ... 𝑁 ) → 𝑗 ∈ ℤ ) |
| 237 |
|
zre |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ℝ ) |
| 238 |
183 236 237
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) → 𝑗 ∈ ℝ ) |
| 239 |
238
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) → 𝑗 ∈ ℝ ) |
| 240 |
|
peano2rem |
⊢ ( 𝑗 ∈ ℝ → ( 𝑗 − 1 ) ∈ ℝ ) |
| 241 |
|
ltm1 |
⊢ ( 𝑗 ∈ ℝ → ( 𝑗 − 1 ) < 𝑗 ) |
| 242 |
241
|
adantr |
⊢ ( ( 𝑗 ∈ ℝ ∧ ( 𝑗 − 1 ) ∈ ℝ ) → ( 𝑗 − 1 ) < 𝑗 ) |
| 243 |
|
ltnle |
⊢ ( ( ( 𝑗 − 1 ) ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( ( 𝑗 − 1 ) < 𝑗 ↔ ¬ 𝑗 ≤ ( 𝑗 − 1 ) ) ) |
| 244 |
243
|
ancoms |
⊢ ( ( 𝑗 ∈ ℝ ∧ ( 𝑗 − 1 ) ∈ ℝ ) → ( ( 𝑗 − 1 ) < 𝑗 ↔ ¬ 𝑗 ≤ ( 𝑗 − 1 ) ) ) |
| 245 |
242 244
|
mpbid |
⊢ ( ( 𝑗 ∈ ℝ ∧ ( 𝑗 − 1 ) ∈ ℝ ) → ¬ 𝑗 ≤ ( 𝑗 − 1 ) ) |
| 246 |
239 240 245
|
syl2anc2 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) → ¬ 𝑗 ≤ ( 𝑗 − 1 ) ) |
| 247 |
|
breq2 |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( 𝑗 ≤ 𝑘 ↔ 𝑗 ≤ ( 𝑗 − 1 ) ) ) |
| 248 |
247
|
notbid |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( ¬ 𝑗 ≤ 𝑘 ↔ ¬ 𝑗 ≤ ( 𝑗 − 1 ) ) ) |
| 249 |
248
|
rspcev |
⊢ ( ( ( 𝑗 − 1 ) ∈ ( 𝐽 ‘ 𝑡 ) ∧ ¬ 𝑗 ≤ ( 𝑗 − 1 ) ) → ∃ 𝑘 ∈ ( 𝐽 ‘ 𝑡 ) ¬ 𝑗 ≤ 𝑘 ) |
| 250 |
235 246 249
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) → ∃ 𝑘 ∈ ( 𝐽 ‘ 𝑡 ) ¬ 𝑗 ≤ 𝑘 ) |
| 251 |
|
rexnal |
⊢ ( ∃ 𝑘 ∈ ( 𝐽 ‘ 𝑡 ) ¬ 𝑗 ≤ 𝑘 ↔ ¬ ∀ 𝑘 ∈ ( 𝐽 ‘ 𝑡 ) 𝑗 ≤ 𝑘 ) |
| 252 |
250 251
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) → ¬ ∀ 𝑘 ∈ ( 𝐽 ‘ 𝑡 ) 𝑗 ≤ 𝑘 ) |
| 253 |
252
|
3expia |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) → ( 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) → ¬ ∀ 𝑘 ∈ ( 𝐽 ‘ 𝑡 ) 𝑗 ≤ 𝑘 ) ) |
| 254 |
253
|
con2d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) → ( ∀ 𝑘 ∈ ( 𝐽 ‘ 𝑡 ) 𝑗 ≤ 𝑘 → ¬ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) |
| 255 |
254
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ ∀ 𝑘 ∈ ( 𝐽 ‘ 𝑡 ) 𝑗 ≤ 𝑘 ) → ¬ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) |
| 256 |
119 255
|
eldifd |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ ∀ 𝑘 ∈ ( 𝐽 ‘ 𝑡 ) 𝑗 ≤ 𝑘 ) → 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) |
| 257 |
256
|
exp31 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) → ( ∀ 𝑘 ∈ ( 𝐽 ‘ 𝑡 ) 𝑗 ≤ 𝑘 → 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) ) |
| 258 |
113 257
|
reximdai |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ∃ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∀ 𝑘 ∈ ( 𝐽 ‘ 𝑡 ) 𝑗 ≤ 𝑘 → ∃ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) |
| 259 |
111 258
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ∃ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) |
| 260 |
|
df-rex |
⊢ ( ∃ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ↔ ∃ 𝑗 ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) |
| 261 |
259 260
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ∃ 𝑗 ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) |
| 262 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) |
| 263 |
|
eldifn |
⊢ ( 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) → ¬ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) |
| 264 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ¬ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) → 𝑡 ∈ 𝑇 ) |
| 265 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ¬ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) → 𝜑 ) |
| 266 |
183
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ¬ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) → 𝑗 ∈ ( 1 ... 𝑁 ) ) |
| 267 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ¬ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) → ¬ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) |
| 268 |
|
oveq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 − ( 1 / 3 ) ) = ( 𝑘 − ( 1 / 3 ) ) ) |
| 269 |
268
|
oveq1d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) = ( ( 𝑘 − ( 1 / 3 ) ) · 𝐸 ) ) |
| 270 |
269
|
breq2d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ↔ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑘 − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 271 |
270
|
rabbidv |
⊢ ( 𝑗 = 𝑘 → { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) } = { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑘 − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 272 |
271
|
cbvmptv |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) } ) = ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑘 − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 273 |
4 272
|
eqtri |
⊢ 𝐷 = ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑘 − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 274 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( 𝑘 − ( 1 / 3 ) ) = ( ( 𝑗 − 1 ) − ( 1 / 3 ) ) ) |
| 275 |
274
|
oveq1d |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( ( 𝑘 − ( 1 / 3 ) ) · 𝐸 ) = ( ( ( 𝑗 − 1 ) − ( 1 / 3 ) ) · 𝐸 ) ) |
| 276 |
275
|
breq2d |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑘 − ( 1 / 3 ) ) · 𝐸 ) ↔ ( 𝐹 ‘ 𝑡 ) ≤ ( ( ( 𝑗 − 1 ) − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 277 |
276
|
rabbidv |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑘 − ( 1 / 3 ) ) · 𝐸 ) } = { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( ( 𝑗 − 1 ) − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 278 |
|
fzssp1 |
⊢ ( 0 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... ( ( 𝑁 − 1 ) + 1 ) ) |
| 279 |
194
|
oveq2d |
⊢ ( 𝜑 → ( 0 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 0 ... 𝑁 ) ) |
| 280 |
278 279
|
sseqtrid |
⊢ ( 𝜑 → ( 0 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... 𝑁 ) ) |
| 281 |
280
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 0 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... 𝑁 ) ) |
| 282 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑗 ∈ ( 1 ... 𝑁 ) ) |
| 283 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 1 ∈ ℤ ) |
| 284 |
203
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑁 ∈ ℤ ) |
| 285 |
236
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑗 ∈ ℤ ) |
| 286 |
|
fzsubel |
⊢ ( ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑗 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑗 − 1 ) ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ) ) |
| 287 |
283 284 285 283 286
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑗 − 1 ) ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ) ) |
| 288 |
282 287
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝑗 − 1 ) ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ) |
| 289 |
124
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 1 − 1 ) = 0 ) |
| 290 |
289
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) = ( 0 ... ( 𝑁 − 1 ) ) ) |
| 291 |
288 290
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝑗 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 292 |
281 291
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝑗 − 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 293 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑇 ∈ V ) |
| 294 |
|
rabexg |
⊢ ( 𝑇 ∈ V → { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( ( 𝑗 − 1 ) − ( 1 / 3 ) ) · 𝐸 ) } ∈ V ) |
| 295 |
293 294
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( ( 𝑗 − 1 ) − ( 1 / 3 ) ) · 𝐸 ) } ∈ V ) |
| 296 |
273 277 292 295
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐷 ‘ ( 𝑗 − 1 ) ) = { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( ( 𝑗 − 1 ) − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 297 |
296
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ↔ 𝑡 ∈ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( ( 𝑗 − 1 ) − ( 1 / 3 ) ) · 𝐸 ) } ) ) |
| 298 |
297
|
notbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ¬ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ↔ ¬ 𝑡 ∈ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( ( 𝑗 − 1 ) − ( 1 / 3 ) ) · 𝐸 ) } ) ) |
| 299 |
298
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) → ¬ 𝑡 ∈ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( ( 𝑗 − 1 ) − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 300 |
265 266 267 299
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ¬ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) → ¬ 𝑡 ∈ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( ( 𝑗 − 1 ) − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 301 |
|
rabid |
⊢ ( 𝑡 ∈ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( ( 𝑗 − 1 ) − ( 1 / 3 ) ) · 𝐸 ) } ↔ ( 𝑡 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( ( 𝑗 − 1 ) − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 302 |
238
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ¬ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) → 𝑗 ∈ ℝ ) |
| 303 |
|
recn |
⊢ ( 𝑗 ∈ ℝ → 𝑗 ∈ ℂ ) |
| 304 |
|
1cnd |
⊢ ( 𝑗 ∈ ℝ → 1 ∈ ℂ ) |
| 305 |
|
1re |
⊢ 1 ∈ ℝ |
| 306 |
305 36 37
|
3pm3.2i |
⊢ ( 1 ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0 ) |
| 307 |
|
redivcl |
⊢ ( ( 1 ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0 ) → ( 1 / 3 ) ∈ ℝ ) |
| 308 |
|
recn |
⊢ ( ( 1 / 3 ) ∈ ℝ → ( 1 / 3 ) ∈ ℂ ) |
| 309 |
306 307 308
|
mp2b |
⊢ ( 1 / 3 ) ∈ ℂ |
| 310 |
309
|
a1i |
⊢ ( 𝑗 ∈ ℝ → ( 1 / 3 ) ∈ ℂ ) |
| 311 |
303 304 310
|
subsub4d |
⊢ ( 𝑗 ∈ ℝ → ( ( 𝑗 − 1 ) − ( 1 / 3 ) ) = ( 𝑗 − ( 1 + ( 1 / 3 ) ) ) ) |
| 312 |
|
3cn |
⊢ 3 ∈ ℂ |
| 313 |
312 211 312 37
|
divdiri |
⊢ ( ( 3 + 1 ) / 3 ) = ( ( 3 / 3 ) + ( 1 / 3 ) ) |
| 314 |
|
3p1e4 |
⊢ ( 3 + 1 ) = 4 |
| 315 |
314
|
oveq1i |
⊢ ( ( 3 + 1 ) / 3 ) = ( 4 / 3 ) |
| 316 |
312 37
|
dividi |
⊢ ( 3 / 3 ) = 1 |
| 317 |
316
|
oveq1i |
⊢ ( ( 3 / 3 ) + ( 1 / 3 ) ) = ( 1 + ( 1 / 3 ) ) |
| 318 |
313 315 317
|
3eqtr3i |
⊢ ( 4 / 3 ) = ( 1 + ( 1 / 3 ) ) |
| 319 |
318
|
a1i |
⊢ ( 𝑗 ∈ ℝ → ( 4 / 3 ) = ( 1 + ( 1 / 3 ) ) ) |
| 320 |
319
|
oveq2d |
⊢ ( 𝑗 ∈ ℝ → ( 𝑗 − ( 4 / 3 ) ) = ( 𝑗 − ( 1 + ( 1 / 3 ) ) ) ) |
| 321 |
311 320
|
eqtr4d |
⊢ ( 𝑗 ∈ ℝ → ( ( 𝑗 − 1 ) − ( 1 / 3 ) ) = ( 𝑗 − ( 4 / 3 ) ) ) |
| 322 |
321
|
oveq1d |
⊢ ( 𝑗 ∈ ℝ → ( ( ( 𝑗 − 1 ) − ( 1 / 3 ) ) · 𝐸 ) = ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) ) |
| 323 |
302 322
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ¬ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) → ( ( ( 𝑗 − 1 ) − ( 1 / 3 ) ) · 𝐸 ) = ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) ) |
| 324 |
323
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ¬ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) → ( ( 𝐹 ‘ 𝑡 ) ≤ ( ( ( 𝑗 − 1 ) − ( 1 / 3 ) ) · 𝐸 ) ↔ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) ) ) |
| 325 |
324
|
anbi2d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ¬ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) → ( ( 𝑡 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( ( 𝑗 − 1 ) − ( 1 / 3 ) ) · 𝐸 ) ) ↔ ( 𝑡 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) ) ) ) |
| 326 |
301 325
|
bitrid |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ¬ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) → ( 𝑡 ∈ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( ( 𝑗 − 1 ) − ( 1 / 3 ) ) · 𝐸 ) } ↔ ( 𝑡 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) ) ) ) |
| 327 |
300 326
|
mtbid |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ¬ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) → ¬ ( 𝑡 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) ) ) |
| 328 |
|
imnan |
⊢ ( ( 𝑡 ∈ 𝑇 → ¬ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) ) ↔ ¬ ( 𝑡 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) ) ) |
| 329 |
327 328
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ¬ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) → ( 𝑡 ∈ 𝑇 → ¬ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) ) ) |
| 330 |
264 329
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ¬ 𝑡 ∈ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) → ¬ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) ) |
| 331 |
263 330
|
sylanr2 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → ¬ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) ) |
| 332 |
238
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → 𝑗 ∈ ℝ ) |
| 333 |
|
4re |
⊢ 4 ∈ ℝ |
| 334 |
333
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → 4 ∈ ℝ ) |
| 335 |
36
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → 3 ∈ ℝ ) |
| 336 |
37
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → 3 ≠ 0 ) |
| 337 |
334 335 336
|
redivcld |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → ( 4 / 3 ) ∈ ℝ ) |
| 338 |
332 337
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → ( 𝑗 − ( 4 / 3 ) ) ∈ ℝ ) |
| 339 |
50
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → 𝐸 ∈ ℝ ) |
| 340 |
|
remulcl |
⊢ ( ( ( 𝑗 − ( 4 / 3 ) ) ∈ ℝ ∧ 𝐸 ∈ ℝ ) → ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) ∈ ℝ ) |
| 341 |
340
|
rexrd |
⊢ ( ( ( 𝑗 − ( 4 / 3 ) ) ∈ ℝ ∧ 𝐸 ∈ ℝ ) → ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) ∈ ℝ* ) |
| 342 |
338 339 341
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) ∈ ℝ* ) |
| 343 |
58
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ* ) |
| 344 |
343
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ* ) |
| 345 |
|
xrltnle |
⊢ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) ∈ ℝ* ∧ ( 𝐹 ‘ 𝑡 ) ∈ ℝ* ) → ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ↔ ¬ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) ) ) |
| 346 |
342 344 345
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ↔ ¬ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) ) ) |
| 347 |
331 346
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ) |
| 348 |
|
simpl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ) |
| 349 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) |
| 350 |
349
|
eldifad |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) |
| 351 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) → 𝜑 ) |
| 352 |
183
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) → 𝑗 ∈ ( 1 ... 𝑁 ) ) |
| 353 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) → 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) |
| 354 |
|
oveq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 − ( 1 / 3 ) ) = ( 𝑗 − ( 1 / 3 ) ) ) |
| 355 |
354
|
oveq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑘 − ( 1 / 3 ) ) · 𝐸 ) = ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) |
| 356 |
355
|
breq2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑘 − ( 1 / 3 ) ) · 𝐸 ) ↔ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 357 |
356
|
rabbidv |
⊢ ( 𝑘 = 𝑗 → { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑘 − ( 1 / 3 ) ) · 𝐸 ) } = { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 358 |
|
fz1ssfz0 |
⊢ ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) |
| 359 |
358
|
sseli |
⊢ ( 𝑗 ∈ ( 1 ... 𝑁 ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
| 360 |
359
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
| 361 |
|
rabexg |
⊢ ( 𝑇 ∈ V → { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) } ∈ V ) |
| 362 |
293 361
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) } ∈ V ) |
| 363 |
273 357 360 362
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐷 ‘ 𝑗 ) = { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 364 |
363
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ↔ 𝑡 ∈ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) } ) ) |
| 365 |
364
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) → 𝑡 ∈ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 366 |
351 352 353 365
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) → 𝑡 ∈ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 367 |
|
rabid |
⊢ ( 𝑡 ∈ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) } ↔ ( 𝑡 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 368 |
366 367
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) → ( 𝑡 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 369 |
368
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) |
| 370 |
348 262 350 369
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) |
| 371 |
347 370
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 372 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → 𝑁 ∈ ℕ ) |
| 373 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → 𝑡 ∈ 𝑇 ) |
| 374 |
183
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → 𝑗 ∈ ( 1 ... 𝑁 ) ) |
| 375 |
|
nfv |
⊢ Ⅎ 𝑗 𝑖 ∈ ( 0 ... 𝑁 ) |
| 376 |
2 375
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) |
| 377 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ |
| 378 |
376 377
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) |
| 379 |
|
eleq1w |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 ∈ ( 0 ... 𝑁 ) ↔ 𝑖 ∈ ( 0 ... 𝑁 ) ) ) |
| 380 |
379
|
anbi2d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) ) ) |
| 381 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑋 ‘ 𝑗 ) = ( 𝑋 ‘ 𝑖 ) ) |
| 382 |
381
|
feq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑋 ‘ 𝑗 ) : 𝑇 ⟶ ℝ ↔ ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) |
| 383 |
380 382
|
imbi12d |
⊢ ( 𝑗 = 𝑖 → ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑋 ‘ 𝑗 ) : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) ) |
| 384 |
378 383 14
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) |
| 385 |
384
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) |
| 386 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → 𝜑 ) |
| 387 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → 𝑖 ∈ ( 0 ... 𝑁 ) ) |
| 388 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → 𝑡 ∈ 𝑇 ) |
| 389 |
2 375 112
|
nf3an |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ 𝑇 ) |
| 390 |
|
nfv |
⊢ Ⅎ 𝑗 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 |
| 391 |
389 390
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) |
| 392 |
379
|
3anbi2d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ 𝑇 ) ↔ ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ 𝑇 ) ) ) |
| 393 |
381
|
fveq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 ) = ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 394 |
393
|
breq1d |
⊢ ( 𝑗 = 𝑖 → ( ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ↔ ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) |
| 395 |
392 394
|
imbi12d |
⊢ ( 𝑗 = 𝑖 → ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
| 396 |
391 395 16
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) |
| 397 |
386 387 388 396
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) |
| 398 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝜑 ) |
| 399 |
|
0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 0 ∈ ℤ ) |
| 400 |
|
elfzel2 |
⊢ ( 𝑖 ∈ ( 𝑗 ... 𝑁 ) → 𝑁 ∈ ℤ ) |
| 401 |
400
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑁 ∈ ℤ ) |
| 402 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 𝑗 ... 𝑁 ) → 𝑖 ∈ ℤ ) |
| 403 |
402
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑖 ∈ ℤ ) |
| 404 |
|
0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 0 ∈ ℝ ) |
| 405 |
|
elfzel1 |
⊢ ( 𝑖 ∈ ( 𝑗 ... 𝑁 ) → 𝑗 ∈ ℤ ) |
| 406 |
405
|
zred |
⊢ ( 𝑖 ∈ ( 𝑗 ... 𝑁 ) → 𝑗 ∈ ℝ ) |
| 407 |
406
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑗 ∈ ℝ ) |
| 408 |
402
|
zred |
⊢ ( 𝑖 ∈ ( 𝑗 ... 𝑁 ) → 𝑖 ∈ ℝ ) |
| 409 |
408
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑖 ∈ ℝ ) |
| 410 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) → 0 ∈ ℝ ) |
| 411 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) → 1 ∈ ℝ ) |
| 412 |
|
0le1 |
⊢ 0 ≤ 1 |
| 413 |
412
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) → 0 ≤ 1 ) |
| 414 |
|
elfzle1 |
⊢ ( 𝑗 ∈ ( 1 ... 𝑁 ) → 1 ≤ 𝑗 ) |
| 415 |
183 414
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) → 1 ≤ 𝑗 ) |
| 416 |
410 411 238 413 415
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) → 0 ≤ 𝑗 ) |
| 417 |
416
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 0 ≤ 𝑗 ) |
| 418 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 𝑗 ... 𝑁 ) → 𝑗 ≤ 𝑖 ) |
| 419 |
418
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑗 ≤ 𝑖 ) |
| 420 |
404 407 409 417 419
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 0 ≤ 𝑖 ) |
| 421 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 𝑗 ... 𝑁 ) → 𝑖 ≤ 𝑁 ) |
| 422 |
421
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑖 ≤ 𝑁 ) |
| 423 |
399 401 403 420 422
|
elfzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑖 ∈ ( 0 ... 𝑁 ) ) |
| 424 |
423
|
adantlrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑖 ∈ ( 0 ... 𝑁 ) ) |
| 425 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ) |
| 426 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) |
| 427 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) |
| 428 |
427
|
eldifad |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) |
| 429 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) |
| 430 |
|
simpl1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ) |
| 431 |
430
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑡 ∈ 𝑇 ) |
| 432 |
430 58
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) |
| 433 |
406
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑗 ∈ ℝ ) |
| 434 |
38
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( 1 / 3 ) ∈ ℝ ) |
| 435 |
433 434
|
resubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( 𝑗 − ( 1 / 3 ) ) ∈ ℝ ) |
| 436 |
|
simpl1l |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝜑 ) |
| 437 |
436 50
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝐸 ∈ ℝ ) |
| 438 |
435 437
|
remulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ∈ ℝ ) |
| 439 |
408
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑖 ∈ ℝ ) |
| 440 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( 1 / 3 ) ∈ ℝ ) |
| 441 |
439 440
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( 𝑖 − ( 1 / 3 ) ) ∈ ℝ ) |
| 442 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝐸 ∈ ℝ ) |
| 443 |
441 442
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( ( 𝑖 − ( 1 / 3 ) ) · 𝐸 ) ∈ ℝ ) |
| 444 |
436 443
|
sylancom |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( ( 𝑖 − ( 1 / 3 ) ) · 𝐸 ) ∈ ℝ ) |
| 445 |
|
simpl3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) |
| 446 |
|
simpl2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) |
| 447 |
430 446 183
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑗 ∈ ( 1 ... 𝑁 ) ) |
| 448 |
436 447 363
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( 𝐷 ‘ 𝑗 ) = { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 449 |
445 448
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑡 ∈ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 450 |
449 367
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 451 |
450
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) |
| 452 |
408
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑖 ∈ ℝ ) |
| 453 |
418
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑗 ≤ 𝑖 ) |
| 454 |
433 452 434 453
|
lesub1dd |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( 𝑗 − ( 1 / 3 ) ) ≤ ( 𝑖 − ( 1 / 3 ) ) ) |
| 455 |
436 441
|
sylancom |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( 𝑖 − ( 1 / 3 ) ) ∈ ℝ ) |
| 456 |
12
|
rpregt0d |
⊢ ( 𝜑 → ( 𝐸 ∈ ℝ ∧ 0 < 𝐸 ) ) |
| 457 |
436 456
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( 𝐸 ∈ ℝ ∧ 0 < 𝐸 ) ) |
| 458 |
|
lemul1 |
⊢ ( ( ( 𝑗 − ( 1 / 3 ) ) ∈ ℝ ∧ ( 𝑖 − ( 1 / 3 ) ) ∈ ℝ ∧ ( 𝐸 ∈ ℝ ∧ 0 < 𝐸 ) ) → ( ( 𝑗 − ( 1 / 3 ) ) ≤ ( 𝑖 − ( 1 / 3 ) ) ↔ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ≤ ( ( 𝑖 − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 459 |
435 455 457 458
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( ( 𝑗 − ( 1 / 3 ) ) ≤ ( 𝑖 − ( 1 / 3 ) ) ↔ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ≤ ( ( 𝑖 − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 460 |
454 459
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ≤ ( ( 𝑖 − ( 1 / 3 ) ) · 𝐸 ) ) |
| 461 |
432 438 444 451 460
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑖 − ( 1 / 3 ) ) · 𝐸 ) ) |
| 462 |
|
rabid |
⊢ ( 𝑡 ∈ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑖 − ( 1 / 3 ) ) · 𝐸 ) } ↔ ( 𝑡 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑖 − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 463 |
431 461 462
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑡 ∈ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑖 − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 464 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) |
| 465 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 0 ∈ ℤ ) |
| 466 |
400
|
3ad2ant3 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑁 ∈ ℤ ) |
| 467 |
402
|
3ad2ant3 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑖 ∈ ℤ ) |
| 468 |
465 466 467
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ) |
| 469 |
420 422
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( 0 ≤ 𝑖 ∧ 𝑖 ≤ 𝑁 ) ) |
| 470 |
469
|
3impa |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( 0 ≤ 𝑖 ∧ 𝑖 ≤ 𝑁 ) ) |
| 471 |
|
elfz2 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑁 ) ↔ ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ ( 0 ≤ 𝑖 ∧ 𝑖 ≤ 𝑁 ) ) ) |
| 472 |
468 470 471
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑖 ∈ ( 0 ... 𝑁 ) ) |
| 473 |
430 446 464 472
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑖 ∈ ( 0 ... 𝑁 ) ) |
| 474 |
|
oveq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 − ( 1 / 3 ) ) = ( 𝑖 − ( 1 / 3 ) ) ) |
| 475 |
474
|
oveq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) = ( ( 𝑖 − ( 1 / 3 ) ) · 𝐸 ) ) |
| 476 |
475
|
breq2d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ↔ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑖 − ( 1 / 3 ) ) · 𝐸 ) ) ) |
| 477 |
476
|
rabbidv |
⊢ ( 𝑗 = 𝑖 → { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) } = { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑖 − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 478 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → 𝑖 ∈ ( 0 ... 𝑁 ) ) |
| 479 |
|
rabexg |
⊢ ( 𝑇 ∈ V → { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑖 − ( 1 / 3 ) ) · 𝐸 ) } ∈ V ) |
| 480 |
8 479
|
syl |
⊢ ( 𝜑 → { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑖 − ( 1 / 3 ) ) · 𝐸 ) } ∈ V ) |
| 481 |
480
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑖 − ( 1 / 3 ) ) · 𝐸 ) } ∈ V ) |
| 482 |
4 477 478 481
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → ( 𝐷 ‘ 𝑖 ) = { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑖 − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 483 |
436 473 482
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( 𝐷 ‘ 𝑖 ) = { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑖 − ( 1 / 3 ) ) · 𝐸 ) } ) |
| 484 |
463 483
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑡 ∈ ( 𝐷 ‘ 𝑖 ) ) |
| 485 |
425 426 428 429 484
|
syl31anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → 𝑡 ∈ ( 𝐷 ‘ 𝑖 ) ) |
| 486 |
2 375 229
|
nf3an |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑖 ) ) |
| 487 |
|
nfv |
⊢ Ⅎ 𝑗 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑁 ) |
| 488 |
486 487
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑖 ) ) → ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑁 ) ) |
| 489 |
379 231
|
3anbi23d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) ↔ ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑖 ) ) ) ) |
| 490 |
393
|
breq1d |
⊢ ( 𝑗 = 𝑖 → ( ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑁 ) ↔ ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑁 ) ) ) |
| 491 |
489 490
|
imbi12d |
⊢ ( 𝑗 = 𝑖 → ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) → ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑁 ) ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑖 ) ) → ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑁 ) ) ) ) |
| 492 |
488 491 17
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑖 ) ) → ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑁 ) ) |
| 493 |
398 424 485 492
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 𝑗 ... 𝑁 ) ) → ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑁 ) ) |
| 494 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → 𝐸 ∈ ℝ+ ) |
| 495 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → 𝐸 < ( 1 / 3 ) ) |
| 496 |
372 373 374 385 397 493 494 495
|
stoweidlem11 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ) |
| 497 |
|
eleq1w |
⊢ ( 𝑙 = 𝑗 → ( 𝑙 ∈ ( 𝐽 ‘ 𝑡 ) ↔ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ) ) |
| 498 |
|
fveq2 |
⊢ ( 𝑙 = 𝑗 → ( 𝐷 ‘ 𝑙 ) = ( 𝐷 ‘ 𝑗 ) ) |
| 499 |
|
oveq1 |
⊢ ( 𝑙 = 𝑗 → ( 𝑙 − 1 ) = ( 𝑗 − 1 ) ) |
| 500 |
499
|
fveq2d |
⊢ ( 𝑙 = 𝑗 → ( 𝐷 ‘ ( 𝑙 − 1 ) ) = ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) |
| 501 |
498 500
|
difeq12d |
⊢ ( 𝑙 = 𝑗 → ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) = ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) |
| 502 |
501
|
eleq2d |
⊢ ( 𝑙 = 𝑗 → ( 𝑡 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ↔ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) |
| 503 |
497 502
|
anbi12d |
⊢ ( 𝑙 = 𝑗 → ( ( 𝑙 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ↔ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) ) |
| 504 |
503
|
anbi2d |
⊢ ( 𝑙 = 𝑗 → ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) ↔ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) ) ) |
| 505 |
|
oveq1 |
⊢ ( 𝑙 = 𝑗 → ( 𝑙 − ( 4 / 3 ) ) = ( 𝑗 − ( 4 / 3 ) ) ) |
| 506 |
505
|
oveq1d |
⊢ ( 𝑙 = 𝑗 → ( ( 𝑙 − ( 4 / 3 ) ) · 𝐸 ) = ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) ) |
| 507 |
506
|
breq1d |
⊢ ( 𝑙 = 𝑗 → ( ( ( 𝑙 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ↔ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) |
| 508 |
504 507
|
imbi12d |
⊢ ( 𝑙 = 𝑗 → ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) → ( ( 𝑙 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ↔ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) |
| 509 |
|
eleq1w |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 ∈ 𝑇 ↔ 𝑡 ∈ 𝑇 ) ) |
| 510 |
509
|
anbi2d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ↔ ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ) ) |
| 511 |
|
fveq2 |
⊢ ( 𝑠 = 𝑡 → ( 𝐽 ‘ 𝑠 ) = ( 𝐽 ‘ 𝑡 ) ) |
| 512 |
511
|
eleq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ↔ 𝑙 ∈ ( 𝐽 ‘ 𝑡 ) ) ) |
| 513 |
|
eleq1w |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ↔ 𝑡 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) |
| 514 |
512 513
|
anbi12d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ∧ 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ↔ ( 𝑙 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) ) |
| 515 |
510 514
|
anbi12d |
⊢ ( 𝑠 = 𝑡 → ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ∧ 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) ↔ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) ) ) |
| 516 |
|
fveq2 |
⊢ ( 𝑠 = 𝑡 → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑠 ) = ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) |
| 517 |
516
|
breq2d |
⊢ ( 𝑠 = 𝑡 → ( ( ( 𝑙 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑠 ) ↔ ( ( 𝑙 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) |
| 518 |
515 517
|
imbi12d |
⊢ ( 𝑠 = 𝑡 → ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ∧ 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) → ( ( 𝑙 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑠 ) ) ↔ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) → ( ( 𝑙 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) |
| 519 |
|
nfv |
⊢ Ⅎ 𝑗 𝑠 ∈ 𝑇 |
| 520 |
2 519
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) |
| 521 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑠 |
| 522 |
101 521
|
nffv |
⊢ Ⅎ 𝑗 ( 𝐽 ‘ 𝑠 ) |
| 523 |
522
|
nfcri |
⊢ Ⅎ 𝑗 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) |
| 524 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑙 |
| 525 |
86 524
|
nffv |
⊢ Ⅎ 𝑗 ( 𝐷 ‘ 𝑙 ) |
| 526 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 𝑙 − 1 ) |
| 527 |
86 526
|
nffv |
⊢ Ⅎ 𝑗 ( 𝐷 ‘ ( 𝑙 − 1 ) ) |
| 528 |
525 527
|
nfdif |
⊢ Ⅎ 𝑗 ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) |
| 529 |
528
|
nfcri |
⊢ Ⅎ 𝑗 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) |
| 530 |
523 529
|
nfan |
⊢ Ⅎ 𝑗 ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ∧ 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) |
| 531 |
520 530
|
nfan |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ∧ 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) |
| 532 |
|
nfv |
⊢ Ⅎ 𝑡 𝑠 ∈ 𝑇 |
| 533 |
3 532
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) |
| 534 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) } ) |
| 535 |
6 534
|
nfcxfr |
⊢ Ⅎ 𝑡 𝐽 |
| 536 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑠 |
| 537 |
535 536
|
nffv |
⊢ Ⅎ 𝑡 ( 𝐽 ‘ 𝑠 ) |
| 538 |
537
|
nfcri |
⊢ Ⅎ 𝑡 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) |
| 539 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑙 |
| 540 |
170 539
|
nffv |
⊢ Ⅎ 𝑡 ( 𝐷 ‘ 𝑙 ) |
| 541 |
|
nfcv |
⊢ Ⅎ 𝑡 ( 𝑙 − 1 ) |
| 542 |
170 541
|
nffv |
⊢ Ⅎ 𝑡 ( 𝐷 ‘ ( 𝑙 − 1 ) ) |
| 543 |
540 542
|
nfdif |
⊢ Ⅎ 𝑡 ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) |
| 544 |
543
|
nfcri |
⊢ Ⅎ 𝑡 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) |
| 545 |
538 544
|
nfan |
⊢ Ⅎ 𝑡 ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ∧ 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) |
| 546 |
533 545
|
nfan |
⊢ Ⅎ 𝑡 ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ∧ 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) |
| 547 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ∧ 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) → 𝑁 ∈ ℕ ) |
| 548 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ∧ 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) → 𝑇 ∈ V ) |
| 549 |
20
|
rabex |
⊢ { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑠 ∈ ( 𝐷 ‘ 𝑗 ) } ∈ V |
| 550 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑗 |
| 551 |
170 550
|
nffv |
⊢ Ⅎ 𝑡 ( 𝐷 ‘ 𝑗 ) |
| 552 |
551
|
nfcri |
⊢ Ⅎ 𝑡 𝑠 ∈ ( 𝐷 ‘ 𝑗 ) |
| 553 |
|
nfcv |
⊢ Ⅎ 𝑡 ( 1 ... 𝑁 ) |
| 554 |
552 553
|
nfrabw |
⊢ Ⅎ 𝑡 { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑠 ∈ ( 𝐷 ‘ 𝑗 ) } |
| 555 |
|
eleq1w |
⊢ ( 𝑡 = 𝑠 → ( 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ↔ 𝑠 ∈ ( 𝐷 ‘ 𝑗 ) ) ) |
| 556 |
555
|
rabbidv |
⊢ ( 𝑡 = 𝑠 → { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) } = { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑠 ∈ ( 𝐷 ‘ 𝑗 ) } ) |
| 557 |
536 554 556 6
|
fvmptf |
⊢ ( ( 𝑠 ∈ 𝑇 ∧ { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑠 ∈ ( 𝐷 ‘ 𝑗 ) } ∈ V ) → ( 𝐽 ‘ 𝑠 ) = { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑠 ∈ ( 𝐷 ‘ 𝑗 ) } ) |
| 558 |
549 557
|
mpan2 |
⊢ ( 𝑠 ∈ 𝑇 → ( 𝐽 ‘ 𝑠 ) = { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑠 ∈ ( 𝐷 ‘ 𝑗 ) } ) |
| 559 |
558
|
eleq2d |
⊢ ( 𝑠 ∈ 𝑇 → ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ↔ 𝑙 ∈ { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑠 ∈ ( 𝐷 ‘ 𝑗 ) } ) ) |
| 560 |
559
|
biimpa |
⊢ ( ( 𝑠 ∈ 𝑇 ∧ 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ) → 𝑙 ∈ { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑠 ∈ ( 𝐷 ‘ 𝑗 ) } ) |
| 561 |
525
|
nfcri |
⊢ Ⅎ 𝑗 𝑠 ∈ ( 𝐷 ‘ 𝑙 ) |
| 562 |
|
fveq2 |
⊢ ( 𝑗 = 𝑙 → ( 𝐷 ‘ 𝑗 ) = ( 𝐷 ‘ 𝑙 ) ) |
| 563 |
562
|
eleq2d |
⊢ ( 𝑗 = 𝑙 → ( 𝑠 ∈ ( 𝐷 ‘ 𝑗 ) ↔ 𝑠 ∈ ( 𝐷 ‘ 𝑙 ) ) ) |
| 564 |
524 84 561 563
|
elrabf |
⊢ ( 𝑙 ∈ { 𝑗 ∈ ( 1 ... 𝑁 ) ∣ 𝑠 ∈ ( 𝐷 ‘ 𝑗 ) } ↔ ( 𝑙 ∈ ( 1 ... 𝑁 ) ∧ 𝑠 ∈ ( 𝐷 ‘ 𝑙 ) ) ) |
| 565 |
560 564
|
sylib |
⊢ ( ( 𝑠 ∈ 𝑇 ∧ 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ) → ( 𝑙 ∈ ( 1 ... 𝑁 ) ∧ 𝑠 ∈ ( 𝐷 ‘ 𝑙 ) ) ) |
| 566 |
565
|
simpld |
⊢ ( ( 𝑠 ∈ 𝑇 ∧ 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ) → 𝑙 ∈ ( 1 ... 𝑁 ) ) |
| 567 |
566
|
ad2ant2lr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ∧ 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) → 𝑙 ∈ ( 1 ... 𝑁 ) ) |
| 568 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ∧ 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) → 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) |
| 569 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ∧ 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) → 𝐹 : 𝑇 ⟶ ℝ ) |
| 570 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ∧ 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) → 𝐸 ∈ ℝ+ ) |
| 571 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ∧ 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) → 𝐸 < ( 1 / 3 ) ) |
| 572 |
384
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ∧ 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) |
| 573 |
|
simp1ll |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ∧ 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ 𝑇 ) → 𝜑 ) |
| 574 |
|
nfv |
⊢ Ⅎ 𝑗 0 ≤ ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) |
| 575 |
389 574
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 576 |
393
|
breq2d |
⊢ ( 𝑗 = 𝑖 → ( 0 ≤ ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 ) ↔ 0 ≤ ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 577 |
392 576
|
imbi12d |
⊢ ( 𝑗 = 𝑖 → ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 ) ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 578 |
575 577 15
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 579 |
573 578
|
syld3an1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ∧ 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 580 |
|
simp1ll |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ∧ 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐵 ‘ 𝑖 ) ) → 𝜑 ) |
| 581 |
|
nfmpt1 |
⊢ Ⅎ 𝑗 ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ { 𝑡 ∈ 𝑇 ∣ ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ≤ ( 𝐹 ‘ 𝑡 ) } ) |
| 582 |
5 581
|
nfcxfr |
⊢ Ⅎ 𝑗 𝐵 |
| 583 |
582 227
|
nffv |
⊢ Ⅎ 𝑗 ( 𝐵 ‘ 𝑖 ) |
| 584 |
583
|
nfcri |
⊢ Ⅎ 𝑗 𝑡 ∈ ( 𝐵 ‘ 𝑖 ) |
| 585 |
2 375 584
|
nf3an |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐵 ‘ 𝑖 ) ) |
| 586 |
|
nfv |
⊢ Ⅎ 𝑗 ( 1 − ( 𝐸 / 𝑁 ) ) < ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) |
| 587 |
585 586
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐵 ‘ 𝑖 ) ) → ( 1 − ( 𝐸 / 𝑁 ) ) < ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 588 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝐵 ‘ 𝑗 ) = ( 𝐵 ‘ 𝑖 ) ) |
| 589 |
588
|
eleq2d |
⊢ ( 𝑗 = 𝑖 → ( 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ↔ 𝑡 ∈ ( 𝐵 ‘ 𝑖 ) ) ) |
| 590 |
379 589
|
3anbi23d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ) ↔ ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐵 ‘ 𝑖 ) ) ) ) |
| 591 |
393
|
breq2d |
⊢ ( 𝑗 = 𝑖 → ( ( 1 − ( 𝐸 / 𝑁 ) ) < ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 ) ↔ ( 1 − ( 𝐸 / 𝑁 ) ) < ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 592 |
590 591
|
imbi12d |
⊢ ( 𝑗 = 𝑖 → ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ) → ( 1 − ( 𝐸 / 𝑁 ) ) < ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 ) ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐵 ‘ 𝑖 ) ) → ( 1 − ( 𝐸 / 𝑁 ) ) < ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 593 |
587 592 18
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐵 ‘ 𝑖 ) ) → ( 1 − ( 𝐸 / 𝑁 ) ) < ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 594 |
580 593
|
syld3an1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ∧ 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ∧ 𝑡 ∈ ( 𝐵 ‘ 𝑖 ) ) → ( 1 − ( 𝐸 / 𝑁 ) ) < ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 595 |
1 531 546 4 5 547 548 567 568 569 570 571 572 579 594
|
stoweidlem26 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑠 ) ∧ 𝑠 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) → ( ( 𝑙 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑠 ) ) |
| 596 |
518 595
|
vtoclg |
⊢ ( 𝑡 ∈ 𝑇 → ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) → ( ( 𝑙 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) |
| 597 |
596
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) → ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) → ( ( 𝑙 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) |
| 598 |
597
|
pm2.43i |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑙 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑙 ) ∖ ( 𝐷 ‘ ( 𝑙 − 1 ) ) ) ) ) → ( ( 𝑙 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) |
| 599 |
508 598
|
vtoclg |
⊢ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) → ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) |
| 600 |
599
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) |
| 601 |
600
|
pm2.43i |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) |
| 602 |
496 601
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) |
| 603 |
262 371 602
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) ) → ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) |
| 604 |
603
|
ex |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) → ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) |
| 605 |
113 604
|
eximd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ∃ 𝑗 ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ 𝑡 ∈ ( ( 𝐷 ‘ 𝑗 ) ∖ ( 𝐷 ‘ ( 𝑗 − 1 ) ) ) ) → ∃ 𝑗 ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) |
| 606 |
261 605
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ∃ 𝑗 ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) |
| 607 |
|
3anass |
⊢ ( ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ↔ ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) |
| 608 |
607
|
exbii |
⊢ ( ∃ 𝑗 ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ↔ ∃ 𝑗 ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) |
| 609 |
606 608
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ∃ 𝑗 ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) |
| 610 |
|
df-rex |
⊢ ( ∃ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ↔ ∃ 𝑗 ( 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ∧ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) |
| 611 |
609 610
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ∃ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) |
| 612 |
|
nfcv |
⊢ Ⅎ 𝑗 ℝ |
| 613 |
103 612
|
ssrexf |
⊢ ( ( 𝐽 ‘ 𝑡 ) ⊆ ℝ → ( ∃ 𝑗 ∈ ( 𝐽 ‘ 𝑡 ) ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) → ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) |
| 614 |
30 611 613
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) |
| 615 |
614
|
ex |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 → ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) |
| 616 |
3 615
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) |