| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem35.1 |
⊢ Ⅎ 𝑡 𝜑 |
| 2 |
|
stoweidlem35.2 |
⊢ Ⅎ 𝑤 𝜑 |
| 3 |
|
stoweidlem35.3 |
⊢ Ⅎ ℎ 𝜑 |
| 4 |
|
stoweidlem35.4 |
⊢ 𝑄 = { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } |
| 5 |
|
stoweidlem35.5 |
⊢ 𝑊 = { 𝑤 ∈ 𝐽 ∣ ∃ ℎ ∈ 𝑄 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } |
| 6 |
|
stoweidlem35.6 |
⊢ 𝐺 = ( 𝑤 ∈ 𝑋 ↦ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) |
| 7 |
|
stoweidlem35.7 |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 8 |
|
stoweidlem35.8 |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 9 |
|
stoweidlem35.9 |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑊 ) |
| 10 |
|
stoweidlem35.10 |
⊢ ( 𝜑 → ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑋 ) |
| 11 |
|
stoweidlem35.11 |
⊢ ( 𝜑 → ( 𝑇 ∖ 𝑈 ) ≠ ∅ ) |
| 12 |
6
|
rnmptfi |
⊢ ( 𝑋 ∈ Fin → ran 𝐺 ∈ Fin ) |
| 13 |
8 12
|
syl |
⊢ ( 𝜑 → ran 𝐺 ∈ Fin ) |
| 14 |
|
fnchoice |
⊢ ( ran 𝐺 ∈ Fin → ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ ran 𝐺 ∈ Fin ) → ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) ) |
| 16 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) ) → 𝑔 Fn ran 𝐺 ) |
| 17 |
|
nfmpt1 |
⊢ Ⅎ 𝑤 ( 𝑤 ∈ 𝑋 ↦ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) |
| 18 |
6 17
|
nfcxfr |
⊢ Ⅎ 𝑤 𝐺 |
| 19 |
18
|
nfrn |
⊢ Ⅎ 𝑤 ran 𝐺 |
| 20 |
19
|
nfcri |
⊢ Ⅎ 𝑤 𝑘 ∈ ran 𝐺 |
| 21 |
2 20
|
nfan |
⊢ Ⅎ 𝑤 ( 𝜑 ∧ 𝑘 ∈ ran 𝐺 ) |
| 22 |
9
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → 𝑤 ∈ 𝑊 ) |
| 23 |
22 5
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → 𝑤 ∈ { 𝑤 ∈ 𝐽 ∣ ∃ ℎ ∈ 𝑄 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) |
| 24 |
|
rabid |
⊢ ( 𝑤 ∈ { 𝑤 ∈ 𝐽 ∣ ∃ ℎ ∈ 𝑄 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ↔ ( 𝑤 ∈ 𝐽 ∧ ∃ ℎ ∈ 𝑄 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } ) ) |
| 25 |
23 24
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 ∈ 𝐽 ∧ ∃ ℎ ∈ 𝑄 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } ) ) |
| 26 |
25
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → ∃ ℎ ∈ 𝑄 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } ) |
| 27 |
|
df-rex |
⊢ ( ∃ ℎ ∈ 𝑄 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } ↔ ∃ ℎ ( ℎ ∈ 𝑄 ∧ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } ) ) |
| 28 |
26 27
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → ∃ ℎ ( ℎ ∈ 𝑄 ∧ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } ) ) |
| 29 |
|
rabid |
⊢ ( ℎ ∈ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ↔ ( ℎ ∈ 𝑄 ∧ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } ) ) |
| 30 |
29
|
exbii |
⊢ ( ∃ ℎ ℎ ∈ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ↔ ∃ ℎ ( ℎ ∈ 𝑄 ∧ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } ) ) |
| 31 |
28 30
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → ∃ ℎ ℎ ∈ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) |
| 32 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑘 = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) → ∃ ℎ ℎ ∈ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) |
| 33 |
|
nfv |
⊢ Ⅎ ℎ 𝑤 ∈ 𝑋 |
| 34 |
3 33
|
nfan |
⊢ Ⅎ ℎ ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) |
| 35 |
|
nfrab1 |
⊢ Ⅎ ℎ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } |
| 36 |
35
|
nfeq2 |
⊢ Ⅎ ℎ 𝑘 = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } |
| 37 |
34 36
|
nfan |
⊢ Ⅎ ℎ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑘 = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) |
| 38 |
|
eleq2 |
⊢ ( 𝑘 = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } → ( ℎ ∈ 𝑘 ↔ ℎ ∈ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) ) |
| 39 |
38
|
biimprd |
⊢ ( 𝑘 = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } → ( ℎ ∈ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } → ℎ ∈ 𝑘 ) ) |
| 40 |
39
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑘 = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) → ( ℎ ∈ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } → ℎ ∈ 𝑘 ) ) |
| 41 |
37 40
|
eximd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑘 = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) → ( ∃ ℎ ℎ ∈ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } → ∃ ℎ ℎ ∈ 𝑘 ) ) |
| 42 |
32 41
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑘 = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) → ∃ ℎ ℎ ∈ 𝑘 ) |
| 43 |
42
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ran 𝐺 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑘 = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) → ∃ ℎ ℎ ∈ 𝑘 ) |
| 44 |
6
|
elrnmpt |
⊢ ( 𝑘 ∈ ran 𝐺 → ( 𝑘 ∈ ran 𝐺 ↔ ∃ 𝑤 ∈ 𝑋 𝑘 = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) ) |
| 45 |
44
|
ibi |
⊢ ( 𝑘 ∈ ran 𝐺 → ∃ 𝑤 ∈ 𝑋 𝑘 = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) |
| 46 |
45
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ran 𝐺 ) → ∃ 𝑤 ∈ 𝑋 𝑘 = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) |
| 47 |
21 43 46
|
r19.29af |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ran 𝐺 ) → ∃ ℎ ℎ ∈ 𝑘 ) |
| 48 |
|
n0 |
⊢ ( 𝑘 ≠ ∅ ↔ ∃ ℎ ℎ ∈ 𝑘 ) |
| 49 |
47 48
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ran 𝐺 ) → 𝑘 ≠ ∅ ) |
| 50 |
49
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) ) ∧ 𝑘 ∈ ran 𝐺 ) → 𝑘 ≠ ∅ ) |
| 51 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) ) ∧ 𝑘 ∈ ran 𝐺 ) → ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) |
| 52 |
|
neeq1 |
⊢ ( 𝑙 = 𝑘 → ( 𝑙 ≠ ∅ ↔ 𝑘 ≠ ∅ ) ) |
| 53 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝑔 ‘ 𝑙 ) = ( 𝑔 ‘ 𝑘 ) ) |
| 54 |
53
|
eleq1d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ↔ ( 𝑔 ‘ 𝑘 ) ∈ 𝑙 ) ) |
| 55 |
|
eleq2 |
⊢ ( 𝑙 = 𝑘 → ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑙 ↔ ( 𝑔 ‘ 𝑘 ) ∈ 𝑘 ) ) |
| 56 |
54 55
|
bitrd |
⊢ ( 𝑙 = 𝑘 → ( ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ↔ ( 𝑔 ‘ 𝑘 ) ∈ 𝑘 ) ) |
| 57 |
52 56
|
imbi12d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝑙 ≠ ∅ → ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ↔ ( 𝑘 ≠ ∅ → ( 𝑔 ‘ 𝑘 ) ∈ 𝑘 ) ) ) |
| 58 |
57
|
rspccva |
⊢ ( ( ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑘 ∈ ran 𝐺 ) → ( 𝑘 ≠ ∅ → ( 𝑔 ‘ 𝑘 ) ∈ 𝑘 ) ) |
| 59 |
51 58
|
sylancom |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) ) ∧ 𝑘 ∈ ran 𝐺 ) → ( 𝑘 ≠ ∅ → ( 𝑔 ‘ 𝑘 ) ∈ 𝑘 ) ) |
| 60 |
50 59
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) ) ∧ 𝑘 ∈ ran 𝐺 ) → ( 𝑔 ‘ 𝑘 ) ∈ 𝑘 ) |
| 61 |
60
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) ) → ∀ 𝑘 ∈ ran 𝐺 ( 𝑔 ‘ 𝑘 ) ∈ 𝑘 ) |
| 62 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑙 ) ) |
| 63 |
62
|
eleq1d |
⊢ ( 𝑘 = 𝑙 → ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑘 ↔ ( 𝑔 ‘ 𝑙 ) ∈ 𝑘 ) ) |
| 64 |
|
eleq2 |
⊢ ( 𝑘 = 𝑙 → ( ( 𝑔 ‘ 𝑙 ) ∈ 𝑘 ↔ ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) |
| 65 |
63 64
|
bitrd |
⊢ ( 𝑘 = 𝑙 → ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑘 ↔ ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) |
| 66 |
65
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ran 𝐺 ( 𝑔 ‘ 𝑘 ) ∈ 𝑘 ↔ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) |
| 67 |
61 66
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) ) → ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) |
| 68 |
16 67
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) ) → ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) |
| 69 |
68
|
ex |
⊢ ( 𝜑 → ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) → ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) ) |
| 70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ ran 𝐺 ∈ Fin ) → ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) → ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) ) |
| 71 |
70
|
eximdv |
⊢ ( ( 𝜑 ∧ ran 𝐺 ∈ Fin ) → ( ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) → ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) ) |
| 72 |
15 71
|
mpd |
⊢ ( ( 𝜑 ∧ ran 𝐺 ∈ Fin ) → ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) |
| 73 |
13 72
|
mpdan |
⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) |
| 74 |
73
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ) |
| 75 |
|
ssn0 |
⊢ ( ( ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑋 ∧ ( 𝑇 ∖ 𝑈 ) ≠ ∅ ) → ∪ 𝑋 ≠ ∅ ) |
| 76 |
10 11 75
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑋 ≠ ∅ ) |
| 77 |
76
|
neneqd |
⊢ ( 𝜑 → ¬ ∪ 𝑋 = ∅ ) |
| 78 |
|
unieq |
⊢ ( 𝑋 = ∅ → ∪ 𝑋 = ∪ ∅ ) |
| 79 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 80 |
78 79
|
eqtrdi |
⊢ ( 𝑋 = ∅ → ∪ 𝑋 = ∅ ) |
| 81 |
77 80
|
nsyl |
⊢ ( 𝜑 → ¬ 𝑋 = ∅ ) |
| 82 |
|
dm0rn0 |
⊢ ( dom 𝐺 = ∅ ↔ ran 𝐺 = ∅ ) |
| 83 |
4 7
|
rabexd |
⊢ ( 𝜑 → 𝑄 ∈ V ) |
| 84 |
|
nfrab1 |
⊢ Ⅎ ℎ { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } |
| 85 |
4 84
|
nfcxfr |
⊢ Ⅎ ℎ 𝑄 |
| 86 |
85
|
rabexgf |
⊢ ( 𝑄 ∈ V → { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ∈ V ) |
| 87 |
83 86
|
syl |
⊢ ( 𝜑 → { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ∈ V ) |
| 88 |
87
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ∈ V ) |
| 89 |
2 88 6
|
fmptdf |
⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ V ) |
| 90 |
|
dffn2 |
⊢ ( 𝐺 Fn 𝑋 ↔ 𝐺 : 𝑋 ⟶ V ) |
| 91 |
89 90
|
sylibr |
⊢ ( 𝜑 → 𝐺 Fn 𝑋 ) |
| 92 |
91
|
fndmd |
⊢ ( 𝜑 → dom 𝐺 = 𝑋 ) |
| 93 |
92
|
eqeq1d |
⊢ ( 𝜑 → ( dom 𝐺 = ∅ ↔ 𝑋 = ∅ ) ) |
| 94 |
82 93
|
bitr3id |
⊢ ( 𝜑 → ( ran 𝐺 = ∅ ↔ 𝑋 = ∅ ) ) |
| 95 |
81 94
|
mtbird |
⊢ ( 𝜑 → ¬ ran 𝐺 = ∅ ) |
| 96 |
|
fz1f1o |
⊢ ( ran 𝐺 ∈ Fin → ( ran 𝐺 = ∅ ∨ ( ( ♯ ‘ ran 𝐺 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ran 𝐺 ) ) –1-1-onto→ ran 𝐺 ) ) ) |
| 97 |
13 96
|
syl |
⊢ ( 𝜑 → ( ran 𝐺 = ∅ ∨ ( ( ♯ ‘ ran 𝐺 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ran 𝐺 ) ) –1-1-onto→ ran 𝐺 ) ) ) |
| 98 |
97
|
ord |
⊢ ( 𝜑 → ( ¬ ran 𝐺 = ∅ → ( ( ♯ ‘ ran 𝐺 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ran 𝐺 ) ) –1-1-onto→ ran 𝐺 ) ) ) |
| 99 |
95 98
|
mpd |
⊢ ( 𝜑 → ( ( ♯ ‘ ran 𝐺 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ran 𝐺 ) ) –1-1-onto→ ran 𝐺 ) ) |
| 100 |
|
oveq2 |
⊢ ( 𝑚 = ( ♯ ‘ ran 𝐺 ) → ( 1 ... 𝑚 ) = ( 1 ... ( ♯ ‘ ran 𝐺 ) ) ) |
| 101 |
100
|
f1oeq2d |
⊢ ( 𝑚 = ( ♯ ‘ ran 𝐺 ) → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ↔ 𝑓 : ( 1 ... ( ♯ ‘ ran 𝐺 ) ) –1-1-onto→ ran 𝐺 ) ) |
| 102 |
101
|
exbidv |
⊢ ( 𝑚 = ( ♯ ‘ ran 𝐺 ) → ( ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ↔ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ran 𝐺 ) ) –1-1-onto→ ran 𝐺 ) ) |
| 103 |
102
|
rspcev |
⊢ ( ( ( ♯ ‘ ran 𝐺 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ran 𝐺 ) ) –1-1-onto→ ran 𝐺 ) → ∃ 𝑚 ∈ ℕ ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) |
| 104 |
99 103
|
syl |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℕ ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) |
| 105 |
|
r19.29 |
⊢ ( ( ∀ 𝑚 ∈ ℕ ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) → ∃ 𝑚 ∈ ℕ ( ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) |
| 106 |
74 104 105
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℕ ( ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) |
| 107 |
|
exdistrv |
⊢ ( ∃ 𝑔 ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ↔ ( ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) |
| 108 |
107
|
biimpri |
⊢ ( ( ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) → ∃ 𝑔 ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) |
| 109 |
108
|
a1i |
⊢ ( 𝜑 → ( ( ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) → ∃ 𝑔 ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) |
| 110 |
109
|
reximdv |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℕ ( ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) → ∃ 𝑚 ∈ ℕ ∃ 𝑔 ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) |
| 111 |
106 110
|
mpd |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℕ ∃ 𝑔 ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) |
| 112 |
|
df-rex |
⊢ ( ∃ 𝑚 ∈ ℕ ∃ 𝑔 ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ↔ ∃ 𝑚 ( 𝑚 ∈ ℕ ∧ ∃ 𝑔 ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) |
| 113 |
111 112
|
sylib |
⊢ ( 𝜑 → ∃ 𝑚 ( 𝑚 ∈ ℕ ∧ ∃ 𝑔 ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) |
| 114 |
|
ax-5 |
⊢ ( 𝑚 ∈ ℕ → ∀ 𝑔 𝑚 ∈ ℕ ) |
| 115 |
|
19.29 |
⊢ ( ( ∀ 𝑔 𝑚 ∈ ℕ ∧ ∃ 𝑔 ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑔 ( 𝑚 ∈ ℕ ∧ ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) |
| 116 |
114 115
|
sylan |
⊢ ( ( 𝑚 ∈ ℕ ∧ ∃ 𝑔 ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑔 ( 𝑚 ∈ ℕ ∧ ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) |
| 117 |
|
ax-5 |
⊢ ( 𝑚 ∈ ℕ → ∀ 𝑓 𝑚 ∈ ℕ ) |
| 118 |
|
19.29 |
⊢ ( ( ∀ 𝑓 𝑚 ∈ ℕ ∧ ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑓 ( 𝑚 ∈ ℕ ∧ ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) |
| 119 |
117 118
|
sylan |
⊢ ( ( 𝑚 ∈ ℕ ∧ ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑓 ( 𝑚 ∈ ℕ ∧ ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) |
| 120 |
119
|
eximi |
⊢ ( ∃ 𝑔 ( 𝑚 ∈ ℕ ∧ ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑔 ∃ 𝑓 ( 𝑚 ∈ ℕ ∧ ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) |
| 121 |
116 120
|
syl |
⊢ ( ( 𝑚 ∈ ℕ ∧ ∃ 𝑔 ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑔 ∃ 𝑓 ( 𝑚 ∈ ℕ ∧ ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) |
| 122 |
|
df-3an |
⊢ ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ↔ ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) |
| 123 |
122
|
anbi2i |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ↔ ( 𝑚 ∈ ℕ ∧ ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) |
| 124 |
123
|
2exbii |
⊢ ( ∃ 𝑔 ∃ 𝑓 ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ↔ ∃ 𝑔 ∃ 𝑓 ( 𝑚 ∈ ℕ ∧ ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) |
| 125 |
121 124
|
sylibr |
⊢ ( ( 𝑚 ∈ ℕ ∧ ∃ 𝑔 ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑔 ∃ 𝑓 ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) |
| 126 |
125
|
a1i |
⊢ ( 𝜑 → ( ( 𝑚 ∈ ℕ ∧ ∃ 𝑔 ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑔 ∃ 𝑓 ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) ) |
| 127 |
126
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑚 ( 𝑚 ∈ ℕ ∧ ∃ 𝑔 ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑚 ∃ 𝑔 ∃ 𝑓 ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) ) |
| 128 |
113 127
|
mpd |
⊢ ( 𝜑 → ∃ 𝑚 ∃ 𝑔 ∃ 𝑓 ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) |
| 129 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) → 𝑄 ∈ V ) |
| 130 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) → 𝑚 ∈ ℕ ) |
| 131 |
|
simprr1 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) → 𝑔 Fn ran 𝐺 ) |
| 132 |
|
elex |
⊢ ( ran 𝐺 ∈ Fin → ran 𝐺 ∈ V ) |
| 133 |
13 132
|
syl |
⊢ ( 𝜑 → ran 𝐺 ∈ V ) |
| 134 |
133
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) → ran 𝐺 ∈ V ) |
| 135 |
|
simprr2 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) → ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ) |
| 136 |
56
|
rspccva |
⊢ ( ( ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑘 ∈ ran 𝐺 ) → ( 𝑔 ‘ 𝑘 ) ∈ 𝑘 ) |
| 137 |
135 136
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) ∧ 𝑘 ∈ ran 𝐺 ) → ( 𝑔 ‘ 𝑘 ) ∈ 𝑘 ) |
| 138 |
|
simprr3 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) → 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) |
| 139 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) → ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑋 ) |
| 140 |
|
nfv |
⊢ Ⅎ 𝑡 𝑚 ∈ ℕ |
| 141 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑔 |
| 142 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑋 |
| 143 |
|
nfrab1 |
⊢ Ⅎ 𝑡 { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } |
| 144 |
143
|
nfeq2 |
⊢ Ⅎ 𝑡 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } |
| 145 |
|
nfv |
⊢ Ⅎ 𝑡 ( ℎ ‘ 𝑍 ) = 0 |
| 146 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) |
| 147 |
145 146
|
nfan |
⊢ Ⅎ 𝑡 ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) |
| 148 |
|
nfcv |
⊢ Ⅎ 𝑡 𝐴 |
| 149 |
147 148
|
nfrabw |
⊢ Ⅎ 𝑡 { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } |
| 150 |
4 149
|
nfcxfr |
⊢ Ⅎ 𝑡 𝑄 |
| 151 |
144 150
|
nfrabw |
⊢ Ⅎ 𝑡 { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } |
| 152 |
142 151
|
nfmpt |
⊢ Ⅎ 𝑡 ( 𝑤 ∈ 𝑋 ↦ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) |
| 153 |
6 152
|
nfcxfr |
⊢ Ⅎ 𝑡 𝐺 |
| 154 |
153
|
nfrn |
⊢ Ⅎ 𝑡 ran 𝐺 |
| 155 |
141 154
|
nffn |
⊢ Ⅎ 𝑡 𝑔 Fn ran 𝐺 |
| 156 |
|
nfv |
⊢ Ⅎ 𝑡 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 |
| 157 |
154 156
|
nfralw |
⊢ Ⅎ 𝑡 ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 |
| 158 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑓 |
| 159 |
|
nfcv |
⊢ Ⅎ 𝑡 ( 1 ... 𝑚 ) |
| 160 |
158 159 154
|
nff1o |
⊢ Ⅎ 𝑡 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 |
| 161 |
155 157 160
|
nf3an |
⊢ Ⅎ 𝑡 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) |
| 162 |
140 161
|
nfan |
⊢ Ⅎ 𝑡 ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) |
| 163 |
1 162
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) |
| 164 |
|
nfv |
⊢ Ⅎ 𝑤 𝑚 ∈ ℕ |
| 165 |
|
nfcv |
⊢ Ⅎ 𝑤 𝑔 |
| 166 |
165 19
|
nffn |
⊢ Ⅎ 𝑤 𝑔 Fn ran 𝐺 |
| 167 |
|
nfv |
⊢ Ⅎ 𝑤 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 |
| 168 |
19 167
|
nfralw |
⊢ Ⅎ 𝑤 ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 |
| 169 |
|
nfcv |
⊢ Ⅎ 𝑤 𝑓 |
| 170 |
|
nfcv |
⊢ Ⅎ 𝑤 ( 1 ... 𝑚 ) |
| 171 |
169 170 19
|
nff1o |
⊢ Ⅎ 𝑤 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 |
| 172 |
166 168 171
|
nf3an |
⊢ Ⅎ 𝑤 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) |
| 173 |
164 172
|
nfan |
⊢ Ⅎ 𝑤 ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) |
| 174 |
2 173
|
nfan |
⊢ Ⅎ 𝑤 ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) |
| 175 |
6 129 130 131 134 137 138 139 163 174 85
|
stoweidlem27 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) → ∃ 𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 176 |
175
|
ex |
⊢ ( 𝜑 → ( ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) |
| 177 |
176
|
2eximdv |
⊢ ( 𝜑 → ( ∃ 𝑔 ∃ 𝑓 ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑔 ∃ 𝑓 ∃ 𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) |
| 178 |
177
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑚 ∃ 𝑔 ∃ 𝑓 ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔 ‘ 𝑙 ) ∈ 𝑙 ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑚 ∃ 𝑔 ∃ 𝑓 ∃ 𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) |
| 179 |
128 178
|
mpd |
⊢ ( 𝜑 → ∃ 𝑚 ∃ 𝑔 ∃ 𝑓 ∃ 𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 180 |
|
id |
⊢ ( ∃ 𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) → ∃ 𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 181 |
180
|
exlimivv |
⊢ ( ∃ 𝑔 ∃ 𝑓 ∃ 𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) → ∃ 𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 182 |
181
|
eximi |
⊢ ( ∃ 𝑚 ∃ 𝑔 ∃ 𝑓 ∃ 𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) → ∃ 𝑚 ∃ 𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 183 |
179 182
|
syl |
⊢ ( 𝜑 → ∃ 𝑚 ∃ 𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |