Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem36.1 |
⊢ Ⅎ ℎ 𝑄 |
2 |
|
stoweidlem36.2 |
⊢ Ⅎ 𝑡 𝐻 |
3 |
|
stoweidlem36.3 |
⊢ Ⅎ 𝑡 𝐹 |
4 |
|
stoweidlem36.4 |
⊢ Ⅎ 𝑡 𝐺 |
5 |
|
stoweidlem36.5 |
⊢ Ⅎ 𝑡 𝜑 |
6 |
|
stoweidlem36.6 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
7 |
|
stoweidlem36.7 |
⊢ 𝑄 = { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } |
8 |
|
stoweidlem36.8 |
⊢ 𝑇 = ∪ 𝐽 |
9 |
|
stoweidlem36.9 |
⊢ 𝐺 = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) · ( 𝐹 ‘ 𝑡 ) ) ) |
10 |
|
stoweidlem36.10 |
⊢ 𝑁 = sup ( ran 𝐺 , ℝ , < ) |
11 |
|
stoweidlem36.11 |
⊢ 𝐻 = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 𝑡 ) / 𝑁 ) ) |
12 |
|
stoweidlem36.12 |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
13 |
|
stoweidlem36.13 |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝐽 Cn 𝐾 ) ) |
14 |
|
stoweidlem36.14 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
15 |
|
stoweidlem36.15 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
16 |
|
stoweidlem36.16 |
⊢ ( 𝜑 → 𝑆 ∈ 𝑇 ) |
17 |
|
stoweidlem36.17 |
⊢ ( 𝜑 → 𝑍 ∈ 𝑇 ) |
18 |
|
stoweidlem36.18 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |
19 |
|
stoweidlem36.19 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑆 ) ≠ ( 𝐹 ‘ 𝑍 ) ) |
20 |
|
stoweidlem36.20 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑍 ) = 0 ) |
21 |
|
eqid |
⊢ ( 𝐽 Cn 𝐾 ) = ( 𝐽 Cn 𝐾 ) |
22 |
3
|
nfeq2 |
⊢ Ⅎ 𝑡 𝑓 = 𝐹 |
23 |
3
|
nfeq2 |
⊢ Ⅎ 𝑡 𝑔 = 𝐹 |
24 |
22 23 14
|
stoweidlem6 |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐹 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) · ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
25 |
18 18 24
|
mpd3an23 |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) · ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
26 |
9 25
|
eqeltrid |
⊢ ( 𝜑 → 𝐺 ∈ 𝐴 ) |
27 |
13 26
|
sseldd |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) |
28 |
6 8 21 27
|
fcnre |
⊢ ( 𝜑 → 𝐺 : 𝑇 ⟶ ℝ ) |
29 |
28
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑡 ) ∈ ℝ ) |
30 |
29
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑡 ) ∈ ℂ ) |
31 |
16
|
ne0d |
⊢ ( 𝜑 → 𝑇 ≠ ∅ ) |
32 |
8 6 12 27 31
|
cncmpmax |
⊢ ( 𝜑 → ( sup ( ran 𝐺 , ℝ , < ) ∈ ran 𝐺 ∧ sup ( ran 𝐺 , ℝ , < ) ∈ ℝ ∧ ∀ 𝑠 ∈ 𝑇 ( 𝐺 ‘ 𝑠 ) ≤ sup ( ran 𝐺 , ℝ , < ) ) ) |
33 |
32
|
simp2d |
⊢ ( 𝜑 → sup ( ran 𝐺 , ℝ , < ) ∈ ℝ ) |
34 |
10 33
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
35 |
34
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑁 ∈ ℂ ) |
37 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
38 |
28 16
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) ∈ ℝ ) |
39 |
13 18
|
sseldd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
40 |
6 8 21 39
|
fcnre |
⊢ ( 𝜑 → 𝐹 : 𝑇 ⟶ ℝ ) |
41 |
40 16
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑆 ) ∈ ℝ ) |
42 |
19 20
|
neeqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑆 ) ≠ 0 ) |
43 |
41 42
|
msqgt0d |
⊢ ( 𝜑 → 0 < ( ( 𝐹 ‘ 𝑆 ) · ( 𝐹 ‘ 𝑆 ) ) ) |
44 |
41 41
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑆 ) · ( 𝐹 ‘ 𝑆 ) ) ∈ ℝ ) |
45 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑆 |
46 |
3 45
|
nffv |
⊢ Ⅎ 𝑡 ( 𝐹 ‘ 𝑆 ) |
47 |
|
nfcv |
⊢ Ⅎ 𝑡 · |
48 |
46 47 46
|
nfov |
⊢ Ⅎ 𝑡 ( ( 𝐹 ‘ 𝑆 ) · ( 𝐹 ‘ 𝑆 ) ) |
49 |
|
fveq2 |
⊢ ( 𝑡 = 𝑆 → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑆 ) ) |
50 |
49 49
|
oveq12d |
⊢ ( 𝑡 = 𝑆 → ( ( 𝐹 ‘ 𝑡 ) · ( 𝐹 ‘ 𝑡 ) ) = ( ( 𝐹 ‘ 𝑆 ) · ( 𝐹 ‘ 𝑆 ) ) ) |
51 |
45 48 50 9
|
fvmptf |
⊢ ( ( 𝑆 ∈ 𝑇 ∧ ( ( 𝐹 ‘ 𝑆 ) · ( 𝐹 ‘ 𝑆 ) ) ∈ ℝ ) → ( 𝐺 ‘ 𝑆 ) = ( ( 𝐹 ‘ 𝑆 ) · ( 𝐹 ‘ 𝑆 ) ) ) |
52 |
16 44 51
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) = ( ( 𝐹 ‘ 𝑆 ) · ( 𝐹 ‘ 𝑆 ) ) ) |
53 |
43 52
|
breqtrrd |
⊢ ( 𝜑 → 0 < ( 𝐺 ‘ 𝑆 ) ) |
54 |
32
|
simp3d |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝑇 ( 𝐺 ‘ 𝑠 ) ≤ sup ( ran 𝐺 , ℝ , < ) ) |
55 |
|
fveq2 |
⊢ ( 𝑠 = 𝑆 → ( 𝐺 ‘ 𝑠 ) = ( 𝐺 ‘ 𝑆 ) ) |
56 |
55
|
breq1d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝐺 ‘ 𝑠 ) ≤ sup ( ran 𝐺 , ℝ , < ) ↔ ( 𝐺 ‘ 𝑆 ) ≤ sup ( ran 𝐺 , ℝ , < ) ) ) |
57 |
56
|
rspccva |
⊢ ( ( ∀ 𝑠 ∈ 𝑇 ( 𝐺 ‘ 𝑠 ) ≤ sup ( ran 𝐺 , ℝ , < ) ∧ 𝑆 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑆 ) ≤ sup ( ran 𝐺 , ℝ , < ) ) |
58 |
54 16 57
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) ≤ sup ( ran 𝐺 , ℝ , < ) ) |
59 |
37 38 33 53 58
|
ltletrd |
⊢ ( 𝜑 → 0 < sup ( ran 𝐺 , ℝ , < ) ) |
60 |
59
|
gt0ne0d |
⊢ ( 𝜑 → sup ( ran 𝐺 , ℝ , < ) ≠ 0 ) |
61 |
10
|
neeq1i |
⊢ ( 𝑁 ≠ 0 ↔ sup ( ran 𝐺 , ℝ , < ) ≠ 0 ) |
62 |
60 61
|
sylibr |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑁 ≠ 0 ) |
64 |
30 36 63
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑡 ) / 𝑁 ) = ( ( 𝐺 ‘ 𝑡 ) · ( 1 / 𝑁 ) ) ) |
65 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
66 |
34 62
|
rereccld |
⊢ ( 𝜑 → ( 1 / 𝑁 ) ∈ ℝ ) |
67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 1 / 𝑁 ) ∈ ℝ ) |
68 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ ( 1 / 𝑁 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( 1 / 𝑁 ) ) |
69 |
68
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( 1 / 𝑁 ) ∈ ℝ ) → ( ( 𝑡 ∈ 𝑇 ↦ ( 1 / 𝑁 ) ) ‘ 𝑡 ) = ( 1 / 𝑁 ) ) |
70 |
65 67 69
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑡 ∈ 𝑇 ↦ ( 1 / 𝑁 ) ) ‘ 𝑡 ) = ( 1 / 𝑁 ) ) |
71 |
70
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑡 ) · ( ( 𝑡 ∈ 𝑇 ↦ ( 1 / 𝑁 ) ) ‘ 𝑡 ) ) = ( ( 𝐺 ‘ 𝑡 ) · ( 1 / 𝑁 ) ) ) |
72 |
64 71
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑡 ) / 𝑁 ) = ( ( 𝐺 ‘ 𝑡 ) · ( ( 𝑡 ∈ 𝑇 ↦ ( 1 / 𝑁 ) ) ‘ 𝑡 ) ) ) |
73 |
5 72
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 𝑡 ) / 𝑁 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 𝑡 ) · ( ( 𝑡 ∈ 𝑇 ↦ ( 1 / 𝑁 ) ) ‘ 𝑡 ) ) ) ) |
74 |
11 73
|
syl5eq |
⊢ ( 𝜑 → 𝐻 = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 𝑡 ) · ( ( 𝑡 ∈ 𝑇 ↦ ( 1 / 𝑁 ) ) ‘ 𝑡 ) ) ) ) |
75 |
15
|
stoweidlem4 |
⊢ ( ( 𝜑 ∧ ( 1 / 𝑁 ) ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ ( 1 / 𝑁 ) ) ∈ 𝐴 ) |
76 |
66 75
|
mpdan |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( 1 / 𝑁 ) ) ∈ 𝐴 ) |
77 |
4
|
nfeq2 |
⊢ Ⅎ 𝑡 𝑓 = 𝐺 |
78 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ ( 1 / 𝑁 ) ) |
79 |
78
|
nfeq2 |
⊢ Ⅎ 𝑡 𝑔 = ( 𝑡 ∈ 𝑇 ↦ ( 1 / 𝑁 ) ) |
80 |
77 79 14
|
stoweidlem6 |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ 𝐴 ∧ ( 𝑡 ∈ 𝑇 ↦ ( 1 / 𝑁 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 𝑡 ) · ( ( 𝑡 ∈ 𝑇 ↦ ( 1 / 𝑁 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
81 |
26 76 80
|
mpd3an23 |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 𝑡 ) · ( ( 𝑡 ∈ 𝑇 ↦ ( 1 / 𝑁 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
82 |
74 81
|
eqeltrd |
⊢ ( 𝜑 → 𝐻 ∈ 𝐴 ) |
83 |
28 17
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑍 ) ∈ ℝ ) |
84 |
83 34 62
|
redivcld |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑍 ) / 𝑁 ) ∈ ℝ ) |
85 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑍 |
86 |
4 85
|
nffv |
⊢ Ⅎ 𝑡 ( 𝐺 ‘ 𝑍 ) |
87 |
|
nfcv |
⊢ Ⅎ 𝑡 / |
88 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑁 |
89 |
86 87 88
|
nfov |
⊢ Ⅎ 𝑡 ( ( 𝐺 ‘ 𝑍 ) / 𝑁 ) |
90 |
|
fveq2 |
⊢ ( 𝑡 = 𝑍 → ( 𝐺 ‘ 𝑡 ) = ( 𝐺 ‘ 𝑍 ) ) |
91 |
90
|
oveq1d |
⊢ ( 𝑡 = 𝑍 → ( ( 𝐺 ‘ 𝑡 ) / 𝑁 ) = ( ( 𝐺 ‘ 𝑍 ) / 𝑁 ) ) |
92 |
85 89 91 11
|
fvmptf |
⊢ ( ( 𝑍 ∈ 𝑇 ∧ ( ( 𝐺 ‘ 𝑍 ) / 𝑁 ) ∈ ℝ ) → ( 𝐻 ‘ 𝑍 ) = ( ( 𝐺 ‘ 𝑍 ) / 𝑁 ) ) |
93 |
17 84 92
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑍 ) = ( ( 𝐺 ‘ 𝑍 ) / 𝑁 ) ) |
94 |
|
0re |
⊢ 0 ∈ ℝ |
95 |
20 94
|
eqeltrdi |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑍 ) ∈ ℝ ) |
96 |
95 95
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑍 ) · ( 𝐹 ‘ 𝑍 ) ) ∈ ℝ ) |
97 |
3 85
|
nffv |
⊢ Ⅎ 𝑡 ( 𝐹 ‘ 𝑍 ) |
98 |
97 47 97
|
nfov |
⊢ Ⅎ 𝑡 ( ( 𝐹 ‘ 𝑍 ) · ( 𝐹 ‘ 𝑍 ) ) |
99 |
|
fveq2 |
⊢ ( 𝑡 = 𝑍 → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑍 ) ) |
100 |
99 99
|
oveq12d |
⊢ ( 𝑡 = 𝑍 → ( ( 𝐹 ‘ 𝑡 ) · ( 𝐹 ‘ 𝑡 ) ) = ( ( 𝐹 ‘ 𝑍 ) · ( 𝐹 ‘ 𝑍 ) ) ) |
101 |
85 98 100 9
|
fvmptf |
⊢ ( ( 𝑍 ∈ 𝑇 ∧ ( ( 𝐹 ‘ 𝑍 ) · ( 𝐹 ‘ 𝑍 ) ) ∈ ℝ ) → ( 𝐺 ‘ 𝑍 ) = ( ( 𝐹 ‘ 𝑍 ) · ( 𝐹 ‘ 𝑍 ) ) ) |
102 |
17 96 101
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑍 ) = ( ( 𝐹 ‘ 𝑍 ) · ( 𝐹 ‘ 𝑍 ) ) ) |
103 |
20 20
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑍 ) · ( 𝐹 ‘ 𝑍 ) ) = ( 0 · 0 ) ) |
104 |
|
0cn |
⊢ 0 ∈ ℂ |
105 |
104
|
mul02i |
⊢ ( 0 · 0 ) = 0 |
106 |
103 105
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑍 ) · ( 𝐹 ‘ 𝑍 ) ) = 0 ) |
107 |
102 106
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑍 ) = 0 ) |
108 |
107
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑍 ) / 𝑁 ) = ( 0 / 𝑁 ) ) |
109 |
35 62
|
div0d |
⊢ ( 𝜑 → ( 0 / 𝑁 ) = 0 ) |
110 |
93 108 109
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑍 ) = 0 ) |
111 |
40
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) |
112 |
111
|
msqge0d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( ( 𝐹 ‘ 𝑡 ) · ( 𝐹 ‘ 𝑡 ) ) ) |
113 |
111 111
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑡 ) · ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
114 |
9
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( ( 𝐹 ‘ 𝑡 ) · ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) → ( 𝐺 ‘ 𝑡 ) = ( ( 𝐹 ‘ 𝑡 ) · ( 𝐹 ‘ 𝑡 ) ) ) |
115 |
65 113 114
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑡 ) = ( ( 𝐹 ‘ 𝑡 ) · ( 𝐹 ‘ 𝑡 ) ) ) |
116 |
112 115
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( 𝐺 ‘ 𝑡 ) ) |
117 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑁 ∈ ℝ ) |
118 |
59 10
|
breqtrrdi |
⊢ ( 𝜑 → 0 < 𝑁 ) |
119 |
118
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 0 < 𝑁 ) |
120 |
|
divge0 |
⊢ ( ( ( ( 𝐺 ‘ 𝑡 ) ∈ ℝ ∧ 0 ≤ ( 𝐺 ‘ 𝑡 ) ) ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → 0 ≤ ( ( 𝐺 ‘ 𝑡 ) / 𝑁 ) ) |
121 |
29 116 117 119 120
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( ( 𝐺 ‘ 𝑡 ) / 𝑁 ) ) |
122 |
29 117 63
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑡 ) / 𝑁 ) ∈ ℝ ) |
123 |
11
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( ( 𝐺 ‘ 𝑡 ) / 𝑁 ) ∈ ℝ ) → ( 𝐻 ‘ 𝑡 ) = ( ( 𝐺 ‘ 𝑡 ) / 𝑁 ) ) |
124 |
65 122 123
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑡 ) = ( ( 𝐺 ‘ 𝑡 ) / 𝑁 ) ) |
125 |
121 124
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( 𝐻 ‘ 𝑡 ) ) |
126 |
30
|
div1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑡 ) / 1 ) = ( 𝐺 ‘ 𝑡 ) ) |
127 |
|
fveq2 |
⊢ ( 𝑠 = 𝑡 → ( 𝐺 ‘ 𝑠 ) = ( 𝐺 ‘ 𝑡 ) ) |
128 |
127
|
breq1d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝐺 ‘ 𝑠 ) ≤ sup ( ran 𝐺 , ℝ , < ) ↔ ( 𝐺 ‘ 𝑡 ) ≤ sup ( ran 𝐺 , ℝ , < ) ) ) |
129 |
128
|
rspccva |
⊢ ( ( ∀ 𝑠 ∈ 𝑇 ( 𝐺 ‘ 𝑠 ) ≤ sup ( ran 𝐺 , ℝ , < ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑡 ) ≤ sup ( ran 𝐺 , ℝ , < ) ) |
130 |
54 129
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑡 ) ≤ sup ( ran 𝐺 , ℝ , < ) ) |
131 |
130 10
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑡 ) ≤ 𝑁 ) |
132 |
126 131
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑡 ) / 1 ) ≤ 𝑁 ) |
133 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 1 ∈ ℝ ) |
134 |
|
0lt1 |
⊢ 0 < 1 |
135 |
134
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 0 < 1 ) |
136 |
|
lediv23 |
⊢ ( ( ( 𝐺 ‘ 𝑡 ) ∈ ℝ ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ∧ ( 1 ∈ ℝ ∧ 0 < 1 ) ) → ( ( ( 𝐺 ‘ 𝑡 ) / 𝑁 ) ≤ 1 ↔ ( ( 𝐺 ‘ 𝑡 ) / 1 ) ≤ 𝑁 ) ) |
137 |
29 117 119 133 135 136
|
syl122anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( ( 𝐺 ‘ 𝑡 ) / 𝑁 ) ≤ 1 ↔ ( ( 𝐺 ‘ 𝑡 ) / 1 ) ≤ 𝑁 ) ) |
138 |
132 137
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑡 ) / 𝑁 ) ≤ 1 ) |
139 |
124 138
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑡 ) ≤ 1 ) |
140 |
125 139
|
jca |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 0 ≤ ( 𝐻 ‘ 𝑡 ) ∧ ( 𝐻 ‘ 𝑡 ) ≤ 1 ) ) |
141 |
140
|
ex |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 → ( 0 ≤ ( 𝐻 ‘ 𝑡 ) ∧ ( 𝐻 ‘ 𝑡 ) ≤ 1 ) ) ) |
142 |
5 141
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝐻 ‘ 𝑡 ) ∧ ( 𝐻 ‘ 𝑡 ) ≤ 1 ) ) |
143 |
110 142
|
jca |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝐻 ‘ 𝑡 ) ∧ ( 𝐻 ‘ 𝑡 ) ≤ 1 ) ) ) |
144 |
|
fveq1 |
⊢ ( ℎ = 𝐻 → ( ℎ ‘ 𝑍 ) = ( 𝐻 ‘ 𝑍 ) ) |
145 |
144
|
eqeq1d |
⊢ ( ℎ = 𝐻 → ( ( ℎ ‘ 𝑍 ) = 0 ↔ ( 𝐻 ‘ 𝑍 ) = 0 ) ) |
146 |
2
|
nfeq2 |
⊢ Ⅎ 𝑡 ℎ = 𝐻 |
147 |
|
fveq1 |
⊢ ( ℎ = 𝐻 → ( ℎ ‘ 𝑡 ) = ( 𝐻 ‘ 𝑡 ) ) |
148 |
147
|
breq2d |
⊢ ( ℎ = 𝐻 → ( 0 ≤ ( ℎ ‘ 𝑡 ) ↔ 0 ≤ ( 𝐻 ‘ 𝑡 ) ) ) |
149 |
147
|
breq1d |
⊢ ( ℎ = 𝐻 → ( ( ℎ ‘ 𝑡 ) ≤ 1 ↔ ( 𝐻 ‘ 𝑡 ) ≤ 1 ) ) |
150 |
148 149
|
anbi12d |
⊢ ( ℎ = 𝐻 → ( ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( 𝐻 ‘ 𝑡 ) ∧ ( 𝐻 ‘ 𝑡 ) ≤ 1 ) ) ) |
151 |
146 150
|
ralbid |
⊢ ( ℎ = 𝐻 → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝐻 ‘ 𝑡 ) ∧ ( 𝐻 ‘ 𝑡 ) ≤ 1 ) ) ) |
152 |
145 151
|
anbi12d |
⊢ ( ℎ = 𝐻 → ( ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) ↔ ( ( 𝐻 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝐻 ‘ 𝑡 ) ∧ ( 𝐻 ‘ 𝑡 ) ≤ 1 ) ) ) ) |
153 |
152
|
elrab |
⊢ ( 𝐻 ∈ { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } ↔ ( 𝐻 ∈ 𝐴 ∧ ( ( 𝐻 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝐻 ‘ 𝑡 ) ∧ ( 𝐻 ‘ 𝑡 ) ≤ 1 ) ) ) ) |
154 |
82 143 153
|
sylanbrc |
⊢ ( 𝜑 → 𝐻 ∈ { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } ) |
155 |
154 7
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐻 ∈ 𝑄 ) |
156 |
38 34 53 118
|
divgt0d |
⊢ ( 𝜑 → 0 < ( ( 𝐺 ‘ 𝑆 ) / 𝑁 ) ) |
157 |
38 34 62
|
redivcld |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑆 ) / 𝑁 ) ∈ ℝ ) |
158 |
4 45
|
nffv |
⊢ Ⅎ 𝑡 ( 𝐺 ‘ 𝑆 ) |
159 |
158 87 88
|
nfov |
⊢ Ⅎ 𝑡 ( ( 𝐺 ‘ 𝑆 ) / 𝑁 ) |
160 |
|
fveq2 |
⊢ ( 𝑡 = 𝑆 → ( 𝐺 ‘ 𝑡 ) = ( 𝐺 ‘ 𝑆 ) ) |
161 |
160
|
oveq1d |
⊢ ( 𝑡 = 𝑆 → ( ( 𝐺 ‘ 𝑡 ) / 𝑁 ) = ( ( 𝐺 ‘ 𝑆 ) / 𝑁 ) ) |
162 |
45 159 161 11
|
fvmptf |
⊢ ( ( 𝑆 ∈ 𝑇 ∧ ( ( 𝐺 ‘ 𝑆 ) / 𝑁 ) ∈ ℝ ) → ( 𝐻 ‘ 𝑆 ) = ( ( 𝐺 ‘ 𝑆 ) / 𝑁 ) ) |
163 |
16 157 162
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑆 ) = ( ( 𝐺 ‘ 𝑆 ) / 𝑁 ) ) |
164 |
156 163
|
breqtrrd |
⊢ ( 𝜑 → 0 < ( 𝐻 ‘ 𝑆 ) ) |
165 |
|
nfcv |
⊢ Ⅎ ℎ 𝐻 |
166 |
1
|
nfel2 |
⊢ Ⅎ ℎ 𝐻 ∈ 𝑄 |
167 |
|
nfv |
⊢ Ⅎ ℎ 0 < ( 𝐻 ‘ 𝑆 ) |
168 |
166 167
|
nfan |
⊢ Ⅎ ℎ ( 𝐻 ∈ 𝑄 ∧ 0 < ( 𝐻 ‘ 𝑆 ) ) |
169 |
|
eleq1 |
⊢ ( ℎ = 𝐻 → ( ℎ ∈ 𝑄 ↔ 𝐻 ∈ 𝑄 ) ) |
170 |
|
fveq1 |
⊢ ( ℎ = 𝐻 → ( ℎ ‘ 𝑆 ) = ( 𝐻 ‘ 𝑆 ) ) |
171 |
170
|
breq2d |
⊢ ( ℎ = 𝐻 → ( 0 < ( ℎ ‘ 𝑆 ) ↔ 0 < ( 𝐻 ‘ 𝑆 ) ) ) |
172 |
169 171
|
anbi12d |
⊢ ( ℎ = 𝐻 → ( ( ℎ ∈ 𝑄 ∧ 0 < ( ℎ ‘ 𝑆 ) ) ↔ ( 𝐻 ∈ 𝑄 ∧ 0 < ( 𝐻 ‘ 𝑆 ) ) ) ) |
173 |
165 168 172
|
spcegf |
⊢ ( 𝐻 ∈ 𝑄 → ( ( 𝐻 ∈ 𝑄 ∧ 0 < ( 𝐻 ‘ 𝑆 ) ) → ∃ ℎ ( ℎ ∈ 𝑄 ∧ 0 < ( ℎ ‘ 𝑆 ) ) ) ) |
174 |
173
|
anabsi5 |
⊢ ( ( 𝐻 ∈ 𝑄 ∧ 0 < ( 𝐻 ‘ 𝑆 ) ) → ∃ ℎ ( ℎ ∈ 𝑄 ∧ 0 < ( ℎ ‘ 𝑆 ) ) ) |
175 |
155 164 174
|
syl2anc |
⊢ ( 𝜑 → ∃ ℎ ( ℎ ∈ 𝑄 ∧ 0 < ( ℎ ‘ 𝑆 ) ) ) |