Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem37.1 |
⊢ 𝑄 = { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } |
2 |
|
stoweidlem37.2 |
⊢ 𝑃 = ( 𝑡 ∈ 𝑇 ↦ ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
3 |
|
stoweidlem37.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
4 |
|
stoweidlem37.4 |
⊢ ( 𝜑 → 𝐺 : ( 1 ... 𝑀 ) ⟶ 𝑄 ) |
5 |
|
stoweidlem37.5 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
6 |
|
stoweidlem37.6 |
⊢ ( 𝜑 → 𝑍 ∈ 𝑇 ) |
7 |
1 2 3 4 5
|
stoweidlem30 |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝑇 ) → ( 𝑃 ‘ 𝑍 ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑍 ) ) ) |
8 |
6 7
|
mpdan |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑍 ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑍 ) ) ) |
9 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑖 ) ∈ 𝑄 ) |
10 |
|
fveq1 |
⊢ ( ℎ = ( 𝐺 ‘ 𝑖 ) → ( ℎ ‘ 𝑍 ) = ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑍 ) ) |
11 |
10
|
eqeq1d |
⊢ ( ℎ = ( 𝐺 ‘ 𝑖 ) → ( ( ℎ ‘ 𝑍 ) = 0 ↔ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑍 ) = 0 ) ) |
12 |
|
fveq1 |
⊢ ( ℎ = ( 𝐺 ‘ 𝑖 ) → ( ℎ ‘ 𝑡 ) = ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
13 |
12
|
breq2d |
⊢ ( ℎ = ( 𝐺 ‘ 𝑖 ) → ( 0 ≤ ( ℎ ‘ 𝑡 ) ↔ 0 ≤ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
14 |
12
|
breq1d |
⊢ ( ℎ = ( 𝐺 ‘ 𝑖 ) → ( ( ℎ ‘ 𝑡 ) ≤ 1 ↔ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) |
15 |
13 14
|
anbi12d |
⊢ ( ℎ = ( 𝐺 ‘ 𝑖 ) → ( ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
16 |
15
|
ralbidv |
⊢ ( ℎ = ( 𝐺 ‘ 𝑖 ) → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
17 |
11 16
|
anbi12d |
⊢ ( ℎ = ( 𝐺 ‘ 𝑖 ) → ( ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) ↔ ( ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) ) ) |
18 |
17 1
|
elrab2 |
⊢ ( ( 𝐺 ‘ 𝑖 ) ∈ 𝑄 ↔ ( ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ∧ ( ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) ) ) |
19 |
9 18
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ∧ ( ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) ) ) |
20 |
19
|
simprld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑍 ) = 0 ) |
21 |
20
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑍 ) = Σ 𝑖 ∈ ( 1 ... 𝑀 ) 0 ) |
22 |
|
fzfi |
⊢ ( 1 ... 𝑀 ) ∈ Fin |
23 |
|
olc |
⊢ ( ( 1 ... 𝑀 ) ∈ Fin → ( ( 1 ... 𝑀 ) ⊆ ( ℤ≥ ‘ 1 ) ∨ ( 1 ... 𝑀 ) ∈ Fin ) ) |
24 |
|
sumz |
⊢ ( ( ( 1 ... 𝑀 ) ⊆ ( ℤ≥ ‘ 1 ) ∨ ( 1 ... 𝑀 ) ∈ Fin ) → Σ 𝑖 ∈ ( 1 ... 𝑀 ) 0 = 0 ) |
25 |
22 23 24
|
mp2b |
⊢ Σ 𝑖 ∈ ( 1 ... 𝑀 ) 0 = 0 |
26 |
21 25
|
eqtrdi |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑍 ) = 0 ) |
27 |
26
|
oveq2d |
⊢ ( 𝜑 → ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑍 ) ) = ( ( 1 / 𝑀 ) · 0 ) ) |
28 |
3
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
29 |
3
|
nnne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
30 |
28 29
|
reccld |
⊢ ( 𝜑 → ( 1 / 𝑀 ) ∈ ℂ ) |
31 |
30
|
mul01d |
⊢ ( 𝜑 → ( ( 1 / 𝑀 ) · 0 ) = 0 ) |
32 |
8 27 31
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑍 ) = 0 ) |