Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem38.1 |
⊢ 𝑄 = { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } |
2 |
|
stoweidlem38.2 |
⊢ 𝑃 = ( 𝑡 ∈ 𝑇 ↦ ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
3 |
|
stoweidlem38.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
4 |
|
stoweidlem38.4 |
⊢ ( 𝜑 → 𝐺 : ( 1 ... 𝑀 ) ⟶ 𝑄 ) |
5 |
|
stoweidlem38.5 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
6 |
3
|
nnrecred |
⊢ ( 𝜑 → ( 1 / 𝑀 ) ∈ ℝ ) |
7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → ( 1 / 𝑀 ) ∈ ℝ ) |
8 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → ( 1 ... 𝑀 ) ∈ Fin ) |
9 |
1 4 5
|
stoweidlem15 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑆 ∈ 𝑇 ) → ( ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ∧ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ≤ 1 ) ) |
10 |
9
|
simp1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑆 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ∈ ℝ ) |
11 |
10
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ∈ ℝ ) |
12 |
8 11
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ∈ ℝ ) |
13 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
14 |
|
0le1 |
⊢ 0 ≤ 1 |
15 |
14
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
16 |
3
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
17 |
3
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑀 ) |
18 |
|
divge0 |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ ( 𝑀 ∈ ℝ ∧ 0 < 𝑀 ) ) → 0 ≤ ( 1 / 𝑀 ) ) |
19 |
13 15 16 17 18
|
syl22anc |
⊢ ( 𝜑 → 0 ≤ ( 1 / 𝑀 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → 0 ≤ ( 1 / 𝑀 ) ) |
21 |
9
|
simp2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑆 ∈ 𝑇 ) → 0 ≤ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) |
22 |
21
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 0 ≤ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) |
23 |
8 11 22
|
fsumge0 |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → 0 ≤ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) |
24 |
7 12 20 23
|
mulge0d |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → 0 ≤ ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) ) |
25 |
1 2 3 4 5
|
stoweidlem30 |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → ( 𝑃 ‘ 𝑆 ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) ) |
26 |
24 25
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → 0 ≤ ( 𝑃 ‘ 𝑆 ) ) |
27 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 1 ∈ ℝ ) |
28 |
9
|
simp3d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑆 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ≤ 1 ) |
29 |
28
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ≤ 1 ) |
30 |
8 11 27 29
|
fsumle |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ≤ Σ 𝑖 ∈ ( 1 ... 𝑀 ) 1 ) |
31 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) |
32 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
33 |
|
fsumconst |
⊢ ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑖 ∈ ( 1 ... 𝑀 ) 1 = ( ( ♯ ‘ ( 1 ... 𝑀 ) ) · 1 ) ) |
34 |
31 32 33
|
sylancl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) 1 = ( ( ♯ ‘ ( 1 ... 𝑀 ) ) · 1 ) ) |
35 |
3
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
36 |
|
hashfz1 |
⊢ ( 𝑀 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑀 ) ) = 𝑀 ) |
37 |
35 36
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑀 ) ) = 𝑀 ) |
38 |
37
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 1 ... 𝑀 ) ) · 1 ) = ( 𝑀 · 1 ) ) |
39 |
3
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
40 |
39
|
mulid1d |
⊢ ( 𝜑 → ( 𝑀 · 1 ) = 𝑀 ) |
41 |
34 38 40
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) 1 = 𝑀 ) |
42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 1 ... 𝑀 ) 1 = 𝑀 ) |
43 |
30 42
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ≤ 𝑀 ) |
44 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → 𝑀 ∈ ℝ ) |
45 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → 1 ∈ ℝ ) |
46 |
|
0lt1 |
⊢ 0 < 1 |
47 |
46
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → 0 < 1 ) |
48 |
16 17
|
jca |
⊢ ( 𝜑 → ( 𝑀 ∈ ℝ ∧ 0 < 𝑀 ) ) |
49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → ( 𝑀 ∈ ℝ ∧ 0 < 𝑀 ) ) |
50 |
|
divgt0 |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 𝑀 ∈ ℝ ∧ 0 < 𝑀 ) ) → 0 < ( 1 / 𝑀 ) ) |
51 |
45 47 49 50
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → 0 < ( 1 / 𝑀 ) ) |
52 |
|
lemul2 |
⊢ ( ( Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ( ( 1 / 𝑀 ) ∈ ℝ ∧ 0 < ( 1 / 𝑀 ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ≤ 𝑀 ↔ ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) ≤ ( ( 1 / 𝑀 ) · 𝑀 ) ) ) |
53 |
12 44 7 51 52
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → ( Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ≤ 𝑀 ↔ ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) ≤ ( ( 1 / 𝑀 ) · 𝑀 ) ) ) |
54 |
43 53
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) ≤ ( ( 1 / 𝑀 ) · 𝑀 ) ) |
55 |
25 54
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → ( 𝑃 ‘ 𝑆 ) ≤ ( ( 1 / 𝑀 ) · 𝑀 ) ) |
56 |
32
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
57 |
3
|
nnne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
58 |
56 39 57
|
3jca |
⊢ ( 𝜑 → ( 1 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ) ) |
59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → ( 1 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ) ) |
60 |
|
divcan1 |
⊢ ( ( 1 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ) → ( ( 1 / 𝑀 ) · 𝑀 ) = 1 ) |
61 |
59 60
|
syl |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → ( ( 1 / 𝑀 ) · 𝑀 ) = 1 ) |
62 |
55 61
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → ( 𝑃 ‘ 𝑆 ) ≤ 1 ) |
63 |
26 62
|
jca |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → ( 0 ≤ ( 𝑃 ‘ 𝑆 ) ∧ ( 𝑃 ‘ 𝑆 ) ≤ 1 ) ) |