| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							stoweidlem39.1 | 
							⊢ Ⅎ ℎ 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							stoweidlem39.2 | 
							⊢ Ⅎ 𝑡 𝜑  | 
						
						
							| 3 | 
							
								
							 | 
							stoweidlem39.3 | 
							⊢ Ⅎ 𝑤 𝜑  | 
						
						
							| 4 | 
							
								
							 | 
							stoweidlem39.4 | 
							⊢ 𝑈  =  ( 𝑇  ∖  𝐵 )  | 
						
						
							| 5 | 
							
								
							 | 
							stoweidlem39.5 | 
							⊢ 𝑌  =  { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) }  | 
						
						
							| 6 | 
							
								
							 | 
							stoweidlem39.6 | 
							⊢ 𝑊  =  { 𝑤  ∈  𝐽  ∣  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) }  | 
						
						
							| 7 | 
							
								
							 | 
							stoweidlem39.7 | 
							⊢ ( 𝜑  →  𝑟  ∈  ( 𝒫  𝑊  ∩  Fin ) )  | 
						
						
							| 8 | 
							
								
							 | 
							stoweidlem39.8 | 
							⊢ ( 𝜑  →  𝐷  ⊆  ∪  𝑟 )  | 
						
						
							| 9 | 
							
								
							 | 
							stoweidlem39.9 | 
							⊢ ( 𝜑  →  𝐷  ≠  ∅ )  | 
						
						
							| 10 | 
							
								
							 | 
							stoweidlem39.10 | 
							⊢ ( 𝜑  →  𝐸  ∈  ℝ+ )  | 
						
						
							| 11 | 
							
								
							 | 
							stoweidlem39.11 | 
							⊢ ( 𝜑  →  𝐵  ⊆  𝑇 )  | 
						
						
							| 12 | 
							
								
							 | 
							stoweidlem39.12 | 
							⊢ ( 𝜑  →  𝑊  ∈  V )  | 
						
						
							| 13 | 
							
								
							 | 
							stoweidlem39.13 | 
							⊢ ( 𝜑  →  𝐴  ∈  V )  | 
						
						
							| 14 | 
							
								8 9
							 | 
							jca | 
							⊢ ( 𝜑  →  ( 𝐷  ⊆  ∪  𝑟  ∧  𝐷  ≠  ∅ ) )  | 
						
						
							| 15 | 
							
								
							 | 
							ssn0 | 
							⊢ ( ( 𝐷  ⊆  ∪  𝑟  ∧  𝐷  ≠  ∅ )  →  ∪  𝑟  ≠  ∅ )  | 
						
						
							| 16 | 
							
								
							 | 
							unieq | 
							⊢ ( 𝑟  =  ∅  →  ∪  𝑟  =  ∪  ∅ )  | 
						
						
							| 17 | 
							
								
							 | 
							uni0 | 
							⊢ ∪  ∅  =  ∅  | 
						
						
							| 18 | 
							
								16 17
							 | 
							eqtrdi | 
							⊢ ( 𝑟  =  ∅  →  ∪  𝑟  =  ∅ )  | 
						
						
							| 19 | 
							
								18
							 | 
							necon3i | 
							⊢ ( ∪  𝑟  ≠  ∅  →  𝑟  ≠  ∅ )  | 
						
						
							| 20 | 
							
								14 15 19
							 | 
							3syl | 
							⊢ ( 𝜑  →  𝑟  ≠  ∅ )  | 
						
						
							| 21 | 
							
								20
							 | 
							neneqd | 
							⊢ ( 𝜑  →  ¬  𝑟  =  ∅ )  | 
						
						
							| 22 | 
							
								
							 | 
							elinel2 | 
							⊢ ( 𝑟  ∈  ( 𝒫  𝑊  ∩  Fin )  →  𝑟  ∈  Fin )  | 
						
						
							| 23 | 
							
								7 22
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑟  ∈  Fin )  | 
						
						
							| 24 | 
							
								
							 | 
							fz1f1o | 
							⊢ ( 𝑟  ∈  Fin  →  ( 𝑟  =  ∅  ∨  ( ( ♯ ‘ 𝑟 )  ∈  ℕ  ∧  ∃ 𝑣 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							pm2.53 | 
							⊢ ( ( 𝑟  =  ∅  ∨  ( ( ♯ ‘ 𝑟 )  ∈  ℕ  ∧  ∃ 𝑣 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) )  →  ( ¬  𝑟  =  ∅  →  ( ( ♯ ‘ 𝑟 )  ∈  ℕ  ∧  ∃ 𝑣 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) ) )  | 
						
						
							| 26 | 
							
								23 24 25
							 | 
							3syl | 
							⊢ ( 𝜑  →  ( ¬  𝑟  =  ∅  →  ( ( ♯ ‘ 𝑟 )  ∈  ℕ  ∧  ∃ 𝑣 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) ) )  | 
						
						
							| 27 | 
							
								21 26
							 | 
							mpd | 
							⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑟 )  ∈  ℕ  ∧  ∃ 𝑣 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑚  =  ( ♯ ‘ 𝑟 )  →  ( 1 ... 𝑚 )  =  ( 1 ... ( ♯ ‘ 𝑟 ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							f1oeq2d | 
							⊢ ( 𝑚  =  ( ♯ ‘ 𝑟 )  →  ( 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟  ↔  𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							exbidv | 
							⊢ ( 𝑚  =  ( ♯ ‘ 𝑟 )  →  ( ∃ 𝑣 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟  ↔  ∃ 𝑣 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							rspcev | 
							⊢ ( ( ( ♯ ‘ 𝑟 )  ∈  ℕ  ∧  ∃ 𝑣 𝑣 : ( 1 ... ( ♯ ‘ 𝑟 ) ) –1-1-onto→ 𝑟 )  →  ∃ 𝑚  ∈  ℕ ∃ 𝑣 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  | 
						
						
							| 32 | 
							
								27 31
							 | 
							syl | 
							⊢ ( 𝜑  →  ∃ 𝑚  ∈  ℕ ∃ 𝑣 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  | 
						
						
							| 33 | 
							
								
							 | 
							f1of | 
							⊢ ( 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟  →  𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑟 )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑟 )  | 
						
						
							| 35 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝜑 )  | 
						
						
							| 36 | 
							
								
							 | 
							elinel1 | 
							⊢ ( 𝑟  ∈  ( 𝒫  𝑊  ∩  Fin )  →  𝑟  ∈  𝒫  𝑊 )  | 
						
						
							| 37 | 
							
								36
							 | 
							elpwid | 
							⊢ ( 𝑟  ∈  ( 𝒫  𝑊  ∩  Fin )  →  𝑟  ⊆  𝑊 )  | 
						
						
							| 38 | 
							
								35 7 37
							 | 
							3syl | 
							⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝑟  ⊆  𝑊 )  | 
						
						
							| 39 | 
							
								34 38
							 | 
							fssd | 
							⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑊 )  | 
						
						
							| 40 | 
							
								8
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝐷  ⊆  ∪  𝑟 )  | 
						
						
							| 41 | 
							
								
							 | 
							dff1o2 | 
							⊢ ( 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟  ↔  ( 𝑣  Fn  ( 1 ... 𝑚 )  ∧  Fun  ◡ 𝑣  ∧  ran  𝑣  =  𝑟 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							simp3bi | 
							⊢ ( 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟  →  ran  𝑣  =  𝑟 )  | 
						
						
							| 43 | 
							
								42
							 | 
							unieqd | 
							⊢ ( 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟  →  ∪  ran  𝑣  =  ∪  𝑟 )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  ∪  ran  𝑣  =  ∪  𝑟 )  | 
						
						
							| 45 | 
							
								40 44
							 | 
							sseqtrrd | 
							⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝐷  ⊆  ∪  ran  𝑣 )  | 
						
						
							| 46 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ ℎ 𝑚  ∈  ℕ  | 
						
						
							| 47 | 
							
								1 46
							 | 
							nfan | 
							⊢ Ⅎ ℎ ( 𝜑  ∧  𝑚  ∈  ℕ )  | 
						
						
							| 48 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ ℎ 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟  | 
						
						
							| 49 | 
							
								47 48
							 | 
							nfan | 
							⊢ Ⅎ ℎ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  | 
						
						
							| 50 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑡 𝑚  ∈  ℕ  | 
						
						
							| 51 | 
							
								2 50
							 | 
							nfan | 
							⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑚  ∈  ℕ )  | 
						
						
							| 52 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑡 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟  | 
						
						
							| 53 | 
							
								51 52
							 | 
							nfan | 
							⊢ Ⅎ 𝑡 ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  | 
						
						
							| 54 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑤 𝑚  ∈  ℕ  | 
						
						
							| 55 | 
							
								3 54
							 | 
							nfan | 
							⊢ Ⅎ 𝑤 ( 𝜑  ∧  𝑚  ∈  ℕ )  | 
						
						
							| 56 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑤 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟  | 
						
						
							| 57 | 
							
								55 56
							 | 
							nfan | 
							⊢ Ⅎ 𝑤 ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  | 
						
						
							| 58 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑤  ∈  𝑟  ↦  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ℎ ‘ 𝑡 ) ) } )  =  ( 𝑤  ∈  𝑟  ↦  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ℎ ‘ 𝑡 ) ) } )  | 
						
						
							| 59 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝑚  ∈  ℕ )  | 
						
						
							| 60 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  | 
						
						
							| 61 | 
							
								10
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝐸  ∈  ℝ+ )  | 
						
						
							| 62 | 
							
								11
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  𝑏  ∈  𝑇 )  | 
						
						
							| 63 | 
							
								
							 | 
							notnot | 
							⊢ ( 𝑏  ∈  𝐵  →  ¬  ¬  𝑏  ∈  𝐵 )  | 
						
						
							| 64 | 
							
								63
							 | 
							intnand | 
							⊢ ( 𝑏  ∈  𝐵  →  ¬  ( 𝑏  ∈  𝑇  ∧  ¬  𝑏  ∈  𝐵 ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ¬  ( 𝑏  ∈  𝑇  ∧  ¬  𝑏  ∈  𝐵 ) )  | 
						
						
							| 66 | 
							
								
							 | 
							eldif | 
							⊢ ( 𝑏  ∈  ( 𝑇  ∖  𝐵 )  ↔  ( 𝑏  ∈  𝑇  ∧  ¬  𝑏  ∈  𝐵 ) )  | 
						
						
							| 67 | 
							
								65 66
							 | 
							sylnibr | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ¬  𝑏  ∈  ( 𝑇  ∖  𝐵 ) )  | 
						
						
							| 68 | 
							
								4
							 | 
							eleq2i | 
							⊢ ( 𝑏  ∈  𝑈  ↔  𝑏  ∈  ( 𝑇  ∖  𝐵 ) )  | 
						
						
							| 69 | 
							
								67 68
							 | 
							sylnibr | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ¬  𝑏  ∈  𝑈 )  | 
						
						
							| 70 | 
							
								62 69
							 | 
							eldifd | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  𝑏  ∈  ( 𝑇  ∖  𝑈 ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑏  ∈  𝐵 𝑏  ∈  ( 𝑇  ∖  𝑈 ) )  | 
						
						
							| 72 | 
							
								
							 | 
							dfss3 | 
							⊢ ( 𝐵  ⊆  ( 𝑇  ∖  𝑈 )  ↔  ∀ 𝑏  ∈  𝐵 𝑏  ∈  ( 𝑇  ∖  𝑈 ) )  | 
						
						
							| 73 | 
							
								71 72
							 | 
							sylibr | 
							⊢ ( 𝜑  →  𝐵  ⊆  ( 𝑇  ∖  𝑈 ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝐵  ⊆  ( 𝑇  ∖  𝑈 ) )  | 
						
						
							| 75 | 
							
								12
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝑊  ∈  V )  | 
						
						
							| 76 | 
							
								13
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝐴  ∈  V )  | 
						
						
							| 77 | 
							
								23
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  𝑟  ∈  Fin )  | 
						
						
							| 78 | 
							
								
							 | 
							mptfi | 
							⊢ ( 𝑟  ∈  Fin  →  ( 𝑤  ∈  𝑟  ↦  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ℎ ‘ 𝑡 ) ) } )  ∈  Fin )  | 
						
						
							| 79 | 
							
								
							 | 
							rnfi | 
							⊢ ( ( 𝑤  ∈  𝑟  ↦  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ℎ ‘ 𝑡 ) ) } )  ∈  Fin  →  ran  ( 𝑤  ∈  𝑟  ↦  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ℎ ‘ 𝑡 ) ) } )  ∈  Fin )  | 
						
						
							| 80 | 
							
								77 78 79
							 | 
							3syl | 
							⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  ran  ( 𝑤  ∈  𝑟  ↦  { ℎ  ∈  𝐴  ∣  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ℎ ‘ 𝑡 ) ) } )  ∈  Fin )  | 
						
						
							| 81 | 
							
								49 53 57 5 6 58 38 59 60 61 74 75 76 80
							 | 
							stoweidlem31 | 
							⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  | 
						
						
							| 82 | 
							
								39 45 81
							 | 
							3jca | 
							⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟 )  →  ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑊  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							ex | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟  →  ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑊  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							eximdv | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ∃ 𝑣 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟  →  ∃ 𝑣 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑊  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							reximdva | 
							⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  ℕ ∃ 𝑣 𝑣 : ( 1 ... 𝑚 ) –1-1-onto→ 𝑟  →  ∃ 𝑚  ∈  ℕ ∃ 𝑣 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑊  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) )  | 
						
						
							| 86 | 
							
								32 85
							 | 
							mpd | 
							⊢ ( 𝜑  →  ∃ 𝑚  ∈  ℕ ∃ 𝑣 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑊  ∧  𝐷  ⊆  ∪  ran  𝑣  ∧  ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑚 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ∀ 𝑡  ∈  ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑚 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑚 ) )  <  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) )  |