Metamath Proof Explorer


Theorem stoweidlem4

Description: Lemma for stoweid : a class variable replaces a setvar variable, for constant functions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypothesis stoweidlem4.1 ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝑡𝑇𝑥 ) ∈ 𝐴 )
Assertion stoweidlem4 ( ( 𝜑𝐵 ∈ ℝ ) → ( 𝑡𝑇𝐵 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 stoweidlem4.1 ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝑡𝑇𝑥 ) ∈ 𝐴 )
2 eleq1 ( 𝑥 = 𝐵 → ( 𝑥 ∈ ℝ ↔ 𝐵 ∈ ℝ ) )
3 2 anbi2d ( 𝑥 = 𝐵 → ( ( 𝜑𝑥 ∈ ℝ ) ↔ ( 𝜑𝐵 ∈ ℝ ) ) )
4 simpl ( ( 𝑥 = 𝐵𝑡𝑇 ) → 𝑥 = 𝐵 )
5 4 mpteq2dva ( 𝑥 = 𝐵 → ( 𝑡𝑇𝑥 ) = ( 𝑡𝑇𝐵 ) )
6 5 eleq1d ( 𝑥 = 𝐵 → ( ( 𝑡𝑇𝑥 ) ∈ 𝐴 ↔ ( 𝑡𝑇𝐵 ) ∈ 𝐴 ) )
7 3 6 imbi12d ( 𝑥 = 𝐵 → ( ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝑡𝑇𝑥 ) ∈ 𝐴 ) ↔ ( ( 𝜑𝐵 ∈ ℝ ) → ( 𝑡𝑇𝐵 ) ∈ 𝐴 ) ) )
8 7 1 vtoclg ( 𝐵 ∈ ℝ → ( ( 𝜑𝐵 ∈ ℝ ) → ( 𝑡𝑇𝐵 ) ∈ 𝐴 ) )
9 8 anabsi7 ( ( 𝜑𝐵 ∈ ℝ ) → ( 𝑡𝑇𝐵 ) ∈ 𝐴 )