Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem4.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
2 |
|
eleq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ ℝ ↔ 𝐵 ∈ ℝ ) ) |
3 |
2
|
anbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ↔ ( 𝜑 ∧ 𝐵 ∈ ℝ ) ) ) |
4 |
|
simpl |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑡 ∈ 𝑇 ) → 𝑥 = 𝐵 ) |
5 |
4
|
mpteq2dva |
⊢ ( 𝑥 = 𝐵 → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) = ( 𝑡 ∈ 𝑇 ↦ 𝐵 ) ) |
6 |
5
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ 𝐵 ) ∈ 𝐴 ) ) |
7 |
3 6
|
imbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝐵 ) ∈ 𝐴 ) ) ) |
8 |
7 1
|
vtoclg |
⊢ ( 𝐵 ∈ ℝ → ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝐵 ) ∈ 𝐴 ) ) |
9 |
8
|
anabsi7 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝐵 ) ∈ 𝐴 ) |