Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem40.1 |
⊢ Ⅎ 𝑡 𝑃 |
2 |
|
stoweidlem40.2 |
⊢ Ⅎ 𝑡 𝜑 |
3 |
|
stoweidlem40.3 |
⊢ 𝑄 = ( 𝑡 ∈ 𝑇 ↦ ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ 𝑀 ) ) |
4 |
|
stoweidlem40.4 |
⊢ 𝐹 = ( 𝑡 ∈ 𝑇 ↦ ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ) |
5 |
|
stoweidlem40.5 |
⊢ 𝐺 = ( 𝑡 ∈ 𝑇 ↦ 1 ) |
6 |
|
stoweidlem40.6 |
⊢ 𝐻 = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) |
7 |
|
stoweidlem40.7 |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
8 |
|
stoweidlem40.8 |
⊢ ( 𝜑 → 𝑃 : 𝑇 ⟶ ℝ ) |
9 |
|
stoweidlem40.9 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
10 |
|
stoweidlem40.10 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
11 |
|
stoweidlem40.11 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
12 |
|
stoweidlem40.12 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
13 |
|
stoweidlem40.13 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
14 |
|
stoweidlem40.14 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
16 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 1 ∈ ℝ ) |
17 |
8
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑃 ‘ 𝑡 ) ∈ ℝ ) |
18 |
13
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑁 ∈ ℕ0 ) |
20 |
17 19
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ∈ ℝ ) |
21 |
16 20
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ∈ ℝ ) |
22 |
4
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ∈ ℝ ) → ( 𝐹 ‘ 𝑡 ) = ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ) |
23 |
15 21 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) = ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ) |
24 |
23
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) = ( 𝐹 ‘ 𝑡 ) ) |
25 |
24
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ 𝑀 ) = ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑀 ) ) |
26 |
2 25
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ 𝑀 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑀 ) ) ) |
27 |
3 26
|
syl5eq |
⊢ ( 𝜑 → 𝑄 = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑀 ) ) ) |
28 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ) |
29 |
4 28
|
nfcxfr |
⊢ Ⅎ 𝑡 𝐹 |
30 |
|
1re |
⊢ 1 ∈ ℝ |
31 |
5
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ 1 ∈ ℝ ) → ( 𝐺 ‘ 𝑡 ) = 1 ) |
32 |
30 31
|
mpan2 |
⊢ ( 𝑡 ∈ 𝑇 → ( 𝐺 ‘ 𝑡 ) = 1 ) |
33 |
32
|
eqcomd |
⊢ ( 𝑡 ∈ 𝑇 → 1 = ( 𝐺 ‘ 𝑡 ) ) |
34 |
33
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 1 = ( 𝐺 ‘ 𝑡 ) ) |
35 |
6
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ∈ ℝ ) → ( 𝐻 ‘ 𝑡 ) = ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) |
36 |
15 20 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑡 ) = ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) |
37 |
36
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) = ( 𝐻 ‘ 𝑡 ) ) |
38 |
34 37
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) = ( ( 𝐺 ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) |
39 |
2 38
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) ) |
40 |
4 39
|
syl5eq |
⊢ ( 𝜑 → 𝐹 = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) ) |
41 |
12
|
stoweidlem4 |
⊢ ( ( 𝜑 ∧ 1 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 1 ) ∈ 𝐴 ) |
42 |
30 41
|
mpan2 |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 1 ) ∈ 𝐴 ) |
43 |
5 42
|
eqeltrid |
⊢ ( 𝜑 → 𝐺 ∈ 𝐴 ) |
44 |
1 2 9 11 12 7 18
|
stoweidlem19 |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ∈ 𝐴 ) |
45 |
6 44
|
eqeltrid |
⊢ ( 𝜑 → 𝐻 ∈ 𝐴 ) |
46 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ 1 ) |
47 |
5 46
|
nfcxfr |
⊢ Ⅎ 𝑡 𝐺 |
48 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) |
49 |
6 48
|
nfcxfr |
⊢ Ⅎ 𝑡 𝐻 |
50 |
47 49 2 9 10 11 12
|
stoweidlem33 |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
51 |
43 45 50
|
mpd3an23 |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
52 |
40 51
|
eqeltrd |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |
53 |
14
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
54 |
29 2 9 11 12 52 53
|
stoweidlem19 |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑀 ) ) ∈ 𝐴 ) |
55 |
27 54
|
eqeltrd |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |