Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem42.1 |
⊢ Ⅎ 𝑖 𝜑 |
2 |
|
stoweidlem42.2 |
⊢ Ⅎ 𝑡 𝜑 |
3 |
|
stoweidlem42.3 |
⊢ Ⅎ 𝑡 𝑌 |
4 |
|
stoweidlem42.4 |
⊢ 𝑃 = ( 𝑓 ∈ 𝑌 , 𝑔 ∈ 𝑌 ↦ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ) |
5 |
|
stoweidlem42.5 |
⊢ 𝑋 = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) |
6 |
|
stoweidlem42.6 |
⊢ 𝐹 = ( 𝑡 ∈ 𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
7 |
|
stoweidlem42.7 |
⊢ 𝑍 = ( 𝑡 ∈ 𝑇 ↦ ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) |
8 |
|
stoweidlem42.8 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
9 |
|
stoweidlem42.9 |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑀 ) ⟶ 𝑌 ) |
10 |
|
stoweidlem42.10 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) |
11 |
|
stoweidlem42.11 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
12 |
|
stoweidlem42.12 |
⊢ ( 𝜑 → 𝐸 < ( 1 / 3 ) ) |
13 |
|
stoweidlem42.13 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
14 |
|
stoweidlem42.14 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝑌 ) |
15 |
|
stoweidlem42.15 |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
16 |
|
stoweidlem42.16 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑇 ) |
17 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
18 |
11
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
19 |
17 18
|
resubcld |
⊢ ( 𝜑 → ( 1 − 𝐸 ) ∈ ℝ ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( 1 − 𝐸 ) ∈ ℝ ) |
21 |
18 8
|
nndivred |
⊢ ( 𝜑 → ( 𝐸 / 𝑀 ) ∈ ℝ ) |
22 |
17 21
|
resubcld |
⊢ ( 𝜑 → ( 1 − ( 𝐸 / 𝑀 ) ) ∈ ℝ ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( 1 − ( 𝐸 / 𝑀 ) ) ∈ ℝ ) |
24 |
8
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → 𝑀 ∈ ℕ0 ) |
26 |
23 25
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( ( 1 − ( 𝐸 / 𝑀 ) ) ↑ 𝑀 ) ∈ ℝ ) |
27 |
|
elnnuz |
⊢ ( 𝑀 ∈ ℕ ↔ 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
28 |
8 27
|
sylib |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
30 |
|
nfv |
⊢ Ⅎ 𝑖 𝑡 ∈ 𝐵 |
31 |
1 30
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) |
32 |
|
nfv |
⊢ Ⅎ 𝑖 𝑎 ∈ ( 1 ... 𝑀 ) |
33 |
31 32
|
nfan |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑎 ∈ ( 1 ... 𝑀 ) ) |
34 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑇 |
35 |
|
nfmpt1 |
⊢ Ⅎ 𝑖 ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) |
36 |
34 35
|
nfmpt |
⊢ Ⅎ 𝑖 ( 𝑡 ∈ 𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
37 |
6 36
|
nfcxfr |
⊢ Ⅎ 𝑖 𝐹 |
38 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑡 |
39 |
37 38
|
nffv |
⊢ Ⅎ 𝑖 ( 𝐹 ‘ 𝑡 ) |
40 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑎 |
41 |
39 40
|
nffv |
⊢ Ⅎ 𝑖 ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑎 ) |
42 |
41
|
nfel1 |
⊢ Ⅎ 𝑖 ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑎 ) ∈ ℝ |
43 |
33 42
|
nfim |
⊢ Ⅎ 𝑖 ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑎 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑎 ) ∈ ℝ ) |
44 |
|
eleq1 |
⊢ ( 𝑖 = 𝑎 → ( 𝑖 ∈ ( 1 ... 𝑀 ) ↔ 𝑎 ∈ ( 1 ... 𝑀 ) ) ) |
45 |
44
|
anbi2d |
⊢ ( 𝑖 = 𝑎 → ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ↔ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑎 ∈ ( 1 ... 𝑀 ) ) ) ) |
46 |
|
fveq2 |
⊢ ( 𝑖 = 𝑎 → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) = ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑎 ) ) |
47 |
46
|
eleq1d |
⊢ ( 𝑖 = 𝑎 → ( ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) ∈ ℝ ↔ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑎 ) ∈ ℝ ) ) |
48 |
45 47
|
imbi12d |
⊢ ( 𝑖 = 𝑎 → ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) ∈ ℝ ) ↔ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑎 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑎 ) ∈ ℝ ) ) ) |
49 |
16
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → 𝑡 ∈ 𝑇 ) |
50 |
|
ovex |
⊢ ( 1 ... 𝑀 ) ∈ V |
51 |
|
mptexg |
⊢ ( ( 1 ... 𝑀 ) ∈ V → ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ V ) |
52 |
50 51
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ V ) |
53 |
6
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ V ) → ( 𝐹 ‘ 𝑡 ) = ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
54 |
49 52 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑡 ) = ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
55 |
9
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈 ‘ 𝑖 ) ∈ 𝑌 ) |
56 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝜑 ) |
57 |
56 55
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝜑 ∧ ( 𝑈 ‘ 𝑖 ) ∈ 𝑌 ) ) |
58 |
|
eleq1 |
⊢ ( 𝑓 = ( 𝑈 ‘ 𝑖 ) → ( 𝑓 ∈ 𝑌 ↔ ( 𝑈 ‘ 𝑖 ) ∈ 𝑌 ) ) |
59 |
58
|
anbi2d |
⊢ ( 𝑓 = ( 𝑈 ‘ 𝑖 ) → ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ) ↔ ( 𝜑 ∧ ( 𝑈 ‘ 𝑖 ) ∈ 𝑌 ) ) ) |
60 |
|
feq1 |
⊢ ( 𝑓 = ( 𝑈 ‘ 𝑖 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) |
61 |
59 60
|
imbi12d |
⊢ ( 𝑓 = ( 𝑈 ‘ 𝑖 ) → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑖 ) ∈ 𝑌 ) → ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) ) |
62 |
61 13
|
vtoclg |
⊢ ( ( 𝑈 ‘ 𝑖 ) ∈ 𝑌 → ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑖 ) ∈ 𝑌 ) → ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) |
63 |
55 57 62
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) |
64 |
63
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) |
65 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑡 ∈ 𝑇 ) |
66 |
64 65
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
67 |
54 66
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) |
68 |
67 66
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) ∈ ℝ ) |
69 |
43 48 68
|
chvarfv |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑎 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑎 ) ∈ ℝ ) |
70 |
|
remulcl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑎 · 𝑗 ) ∈ ℝ ) |
71 |
70
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) → ( 𝑎 · 𝑗 ) ∈ ℝ ) |
72 |
29 69 71
|
seqcl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ∈ ℝ ) |
73 |
11
|
rpcnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
74 |
8
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
75 |
8
|
nnne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
76 |
73 74 75
|
divcan1d |
⊢ ( 𝜑 → ( ( 𝐸 / 𝑀 ) · 𝑀 ) = 𝐸 ) |
77 |
76
|
eqcomd |
⊢ ( 𝜑 → 𝐸 = ( ( 𝐸 / 𝑀 ) · 𝑀 ) ) |
78 |
77
|
oveq2d |
⊢ ( 𝜑 → ( 1 − 𝐸 ) = ( 1 − ( ( 𝐸 / 𝑀 ) · 𝑀 ) ) ) |
79 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
80 |
73 74 75
|
divcld |
⊢ ( 𝜑 → ( 𝐸 / 𝑀 ) ∈ ℂ ) |
81 |
80 74
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐸 / 𝑀 ) · 𝑀 ) ∈ ℂ ) |
82 |
79 81
|
negsubd |
⊢ ( 𝜑 → ( 1 + - ( ( 𝐸 / 𝑀 ) · 𝑀 ) ) = ( 1 − ( ( 𝐸 / 𝑀 ) · 𝑀 ) ) ) |
83 |
80 74
|
mulneg1d |
⊢ ( 𝜑 → ( - ( 𝐸 / 𝑀 ) · 𝑀 ) = - ( ( 𝐸 / 𝑀 ) · 𝑀 ) ) |
84 |
83
|
eqcomd |
⊢ ( 𝜑 → - ( ( 𝐸 / 𝑀 ) · 𝑀 ) = ( - ( 𝐸 / 𝑀 ) · 𝑀 ) ) |
85 |
84
|
oveq2d |
⊢ ( 𝜑 → ( 1 + - ( ( 𝐸 / 𝑀 ) · 𝑀 ) ) = ( 1 + ( - ( 𝐸 / 𝑀 ) · 𝑀 ) ) ) |
86 |
78 82 85
|
3eqtr2d |
⊢ ( 𝜑 → ( 1 − 𝐸 ) = ( 1 + ( - ( 𝐸 / 𝑀 ) · 𝑀 ) ) ) |
87 |
21
|
renegcld |
⊢ ( 𝜑 → - ( 𝐸 / 𝑀 ) ∈ ℝ ) |
88 |
8
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
89 |
|
3re |
⊢ 3 ∈ ℝ |
90 |
89
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
91 |
|
3ne0 |
⊢ 3 ≠ 0 |
92 |
91
|
a1i |
⊢ ( 𝜑 → 3 ≠ 0 ) |
93 |
90 92
|
rereccld |
⊢ ( 𝜑 → ( 1 / 3 ) ∈ ℝ ) |
94 |
|
1lt3 |
⊢ 1 < 3 |
95 |
94
|
a1i |
⊢ ( 𝜑 → 1 < 3 ) |
96 |
|
0lt1 |
⊢ 0 < 1 |
97 |
96
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
98 |
|
3pos |
⊢ 0 < 3 |
99 |
98
|
a1i |
⊢ ( 𝜑 → 0 < 3 ) |
100 |
|
ltdiv2 |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 3 ∈ ℝ ∧ 0 < 3 ) ∧ ( 1 ∈ ℝ ∧ 0 < 1 ) ) → ( 1 < 3 ↔ ( 1 / 3 ) < ( 1 / 1 ) ) ) |
101 |
17 97 90 99 17 97 100
|
syl222anc |
⊢ ( 𝜑 → ( 1 < 3 ↔ ( 1 / 3 ) < ( 1 / 1 ) ) ) |
102 |
95 101
|
mpbid |
⊢ ( 𝜑 → ( 1 / 3 ) < ( 1 / 1 ) ) |
103 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
104 |
102 103
|
breqtrdi |
⊢ ( 𝜑 → ( 1 / 3 ) < 1 ) |
105 |
18 93 17 12 104
|
lttrd |
⊢ ( 𝜑 → 𝐸 < 1 ) |
106 |
8
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑀 ) |
107 |
18 17 88 105 106
|
ltletrd |
⊢ ( 𝜑 → 𝐸 < 𝑀 ) |
108 |
18 88 107
|
ltled |
⊢ ( 𝜑 → 𝐸 ≤ 𝑀 ) |
109 |
11
|
rpregt0d |
⊢ ( 𝜑 → ( 𝐸 ∈ ℝ ∧ 0 < 𝐸 ) ) |
110 |
8
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑀 ) |
111 |
|
lediv2 |
⊢ ( ( ( 𝐸 ∈ ℝ ∧ 0 < 𝐸 ) ∧ ( 𝑀 ∈ ℝ ∧ 0 < 𝑀 ) ∧ ( 𝐸 ∈ ℝ ∧ 0 < 𝐸 ) ) → ( 𝐸 ≤ 𝑀 ↔ ( 𝐸 / 𝑀 ) ≤ ( 𝐸 / 𝐸 ) ) ) |
112 |
109 88 110 109 111
|
syl121anc |
⊢ ( 𝜑 → ( 𝐸 ≤ 𝑀 ↔ ( 𝐸 / 𝑀 ) ≤ ( 𝐸 / 𝐸 ) ) ) |
113 |
108 112
|
mpbid |
⊢ ( 𝜑 → ( 𝐸 / 𝑀 ) ≤ ( 𝐸 / 𝐸 ) ) |
114 |
11
|
rpcnne0d |
⊢ ( 𝜑 → ( 𝐸 ∈ ℂ ∧ 𝐸 ≠ 0 ) ) |
115 |
|
divid |
⊢ ( ( 𝐸 ∈ ℂ ∧ 𝐸 ≠ 0 ) → ( 𝐸 / 𝐸 ) = 1 ) |
116 |
114 115
|
syl |
⊢ ( 𝜑 → ( 𝐸 / 𝐸 ) = 1 ) |
117 |
113 116
|
breqtrd |
⊢ ( 𝜑 → ( 𝐸 / 𝑀 ) ≤ 1 ) |
118 |
21 17
|
lenegd |
⊢ ( 𝜑 → ( ( 𝐸 / 𝑀 ) ≤ 1 ↔ - 1 ≤ - ( 𝐸 / 𝑀 ) ) ) |
119 |
117 118
|
mpbid |
⊢ ( 𝜑 → - 1 ≤ - ( 𝐸 / 𝑀 ) ) |
120 |
|
bernneq |
⊢ ( ( - ( 𝐸 / 𝑀 ) ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ - 1 ≤ - ( 𝐸 / 𝑀 ) ) → ( 1 + ( - ( 𝐸 / 𝑀 ) · 𝑀 ) ) ≤ ( ( 1 + - ( 𝐸 / 𝑀 ) ) ↑ 𝑀 ) ) |
121 |
87 24 119 120
|
syl3anc |
⊢ ( 𝜑 → ( 1 + ( - ( 𝐸 / 𝑀 ) · 𝑀 ) ) ≤ ( ( 1 + - ( 𝐸 / 𝑀 ) ) ↑ 𝑀 ) ) |
122 |
79 80
|
negsubd |
⊢ ( 𝜑 → ( 1 + - ( 𝐸 / 𝑀 ) ) = ( 1 − ( 𝐸 / 𝑀 ) ) ) |
123 |
122
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 + - ( 𝐸 / 𝑀 ) ) ↑ 𝑀 ) = ( ( 1 − ( 𝐸 / 𝑀 ) ) ↑ 𝑀 ) ) |
124 |
121 123
|
breqtrd |
⊢ ( 𝜑 → ( 1 + ( - ( 𝐸 / 𝑀 ) · 𝑀 ) ) ≤ ( ( 1 − ( 𝐸 / 𝑀 ) ) ↑ 𝑀 ) ) |
125 |
86 124
|
eqbrtrd |
⊢ ( 𝜑 → ( 1 − 𝐸 ) ≤ ( ( 1 − ( 𝐸 / 𝑀 ) ) ↑ 𝑀 ) ) |
126 |
125
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( 1 − 𝐸 ) ≤ ( ( 1 − ( 𝐸 / 𝑀 ) ) ↑ 𝑀 ) ) |
127 |
|
eqid |
⊢ seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) = seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) |
128 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → 𝑀 ∈ ℕ ) |
129 |
|
eqid |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) |
130 |
31 66 129
|
fmptdf |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) : ( 1 ... 𝑀 ) ⟶ ℝ ) |
131 |
54
|
feq1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑡 ) : ( 1 ... 𝑀 ) ⟶ ℝ ↔ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) : ( 1 ... 𝑀 ) ⟶ ℝ ) ) |
132 |
130 131
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑡 ) : ( 1 ... 𝑀 ) ⟶ ℝ ) |
133 |
10
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ 𝐵 ) → ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) |
134 |
133
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) |
135 |
134 67
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) ) |
136 |
80
|
addid2d |
⊢ ( 𝜑 → ( 0 + ( 𝐸 / 𝑀 ) ) = ( 𝐸 / 𝑀 ) ) |
137 |
|
lediv2 |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 𝑀 ∈ ℝ ∧ 0 < 𝑀 ) ∧ ( 𝐸 ∈ ℝ ∧ 0 < 𝐸 ) ) → ( 1 ≤ 𝑀 ↔ ( 𝐸 / 𝑀 ) ≤ ( 𝐸 / 1 ) ) ) |
138 |
17 97 88 110 109 137
|
syl221anc |
⊢ ( 𝜑 → ( 1 ≤ 𝑀 ↔ ( 𝐸 / 𝑀 ) ≤ ( 𝐸 / 1 ) ) ) |
139 |
106 138
|
mpbid |
⊢ ( 𝜑 → ( 𝐸 / 𝑀 ) ≤ ( 𝐸 / 1 ) ) |
140 |
73
|
div1d |
⊢ ( 𝜑 → ( 𝐸 / 1 ) = 𝐸 ) |
141 |
139 140
|
breqtrd |
⊢ ( 𝜑 → ( 𝐸 / 𝑀 ) ≤ 𝐸 ) |
142 |
21 18 17 141 105
|
lelttrd |
⊢ ( 𝜑 → ( 𝐸 / 𝑀 ) < 1 ) |
143 |
136 142
|
eqbrtrd |
⊢ ( 𝜑 → ( 0 + ( 𝐸 / 𝑀 ) ) < 1 ) |
144 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
145 |
144 21 17
|
ltaddsubd |
⊢ ( 𝜑 → ( ( 0 + ( 𝐸 / 𝑀 ) ) < 1 ↔ 0 < ( 1 − ( 𝐸 / 𝑀 ) ) ) ) |
146 |
143 145
|
mpbid |
⊢ ( 𝜑 → 0 < ( 1 − ( 𝐸 / 𝑀 ) ) ) |
147 |
22 146
|
elrpd |
⊢ ( 𝜑 → ( 1 − ( 𝐸 / 𝑀 ) ) ∈ ℝ+ ) |
148 |
147
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( 1 − ( 𝐸 / 𝑀 ) ) ∈ ℝ+ ) |
149 |
39 31 127 128 132 135 148
|
stoweidlem3 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( ( 1 − ( 𝐸 / 𝑀 ) ) ↑ 𝑀 ) < ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) |
150 |
20 26 72 126 149
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( 1 − 𝐸 ) < ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) |
151 |
7
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ∈ ℝ ) → ( 𝑍 ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) |
152 |
49 72 151
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( 𝑍 ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) |
153 |
150 152
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( 1 − 𝐸 ) < ( 𝑍 ‘ 𝑡 ) ) |
154 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → 𝜑 ) |
155 |
1 3 4 5 6 7 15 8 9 13 14
|
fmuldfeq |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑋 ‘ 𝑡 ) = ( 𝑍 ‘ 𝑡 ) ) |
156 |
154 49 155
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( 𝑋 ‘ 𝑡 ) = ( 𝑍 ‘ 𝑡 ) ) |
157 |
153 156
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( 1 − 𝐸 ) < ( 𝑋 ‘ 𝑡 ) ) |
158 |
157
|
ex |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐵 → ( 1 − 𝐸 ) < ( 𝑋 ‘ 𝑡 ) ) ) |
159 |
2 158
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑋 ‘ 𝑡 ) ) |