Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem44.1 |
⊢ Ⅎ 𝑗 𝜑 |
2 |
|
stoweidlem44.2 |
⊢ Ⅎ 𝑡 𝜑 |
3 |
|
stoweidlem44.3 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
4 |
|
stoweidlem44.4 |
⊢ 𝑄 = { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } |
5 |
|
stoweidlem44.5 |
⊢ 𝑃 = ( 𝑡 ∈ 𝑇 ↦ ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
6 |
|
stoweidlem44.6 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
7 |
|
stoweidlem44.7 |
⊢ ( 𝜑 → 𝐺 : ( 1 ... 𝑀 ) ⟶ 𝑄 ) |
8 |
|
stoweidlem44.8 |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑗 ∈ ( 1 ... 𝑀 ) 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) |
9 |
|
stoweidlem44.9 |
⊢ 𝑇 = ∪ 𝐽 |
10 |
|
stoweidlem44.10 |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝐽 Cn 𝐾 ) ) |
11 |
|
stoweidlem44.11 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
12 |
|
stoweidlem44.12 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
13 |
|
stoweidlem44.13 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
14 |
|
stoweidlem44.14 |
⊢ ( 𝜑 → 𝑍 ∈ 𝑇 ) |
15 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
16 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ ( 1 / 𝑀 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( 1 / 𝑀 ) ) |
17 |
6
|
nnrecred |
⊢ ( 𝜑 → ( 1 / 𝑀 ) ∈ ℝ ) |
18 |
|
ssrab2 |
⊢ { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } ⊆ 𝐴 |
19 |
4 18
|
eqsstri |
⊢ 𝑄 ⊆ 𝐴 |
20 |
|
fss |
⊢ ( ( 𝐺 : ( 1 ... 𝑀 ) ⟶ 𝑄 ∧ 𝑄 ⊆ 𝐴 ) → 𝐺 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) |
21 |
7 19 20
|
sylancl |
⊢ ( 𝜑 → 𝐺 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) |
22 |
|
eqid |
⊢ ( 𝐽 Cn 𝐾 ) = ( 𝐽 Cn 𝐾 ) |
23 |
10
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) |
24 |
3 9 22 23
|
fcnre |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
25 |
2 5 15 16 6 17 21 11 12 13 24
|
stoweidlem32 |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
26 |
4 5 6 7 24
|
stoweidlem38 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 0 ≤ ( 𝑃 ‘ 𝑡 ) ∧ ( 𝑃 ‘ 𝑡 ) ≤ 1 ) ) |
27 |
26
|
ex |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 → ( 0 ≤ ( 𝑃 ‘ 𝑡 ) ∧ ( 𝑃 ‘ 𝑡 ) ≤ 1 ) ) ) |
28 |
2 27
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑃 ‘ 𝑡 ) ∧ ( 𝑃 ‘ 𝑡 ) ≤ 1 ) ) |
29 |
4 5 6 7 24 14
|
stoweidlem37 |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑍 ) = 0 ) |
30 |
|
nfv |
⊢ Ⅎ 𝑗 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) |
31 |
1 30
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) |
32 |
|
nfv |
⊢ Ⅎ 𝑗 0 < ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
33 |
8
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ∃ 𝑗 ∈ ( 1 ... 𝑀 ) 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) |
34 |
|
df-rex |
⊢ ( ∃ 𝑗 ∈ ( 1 ... 𝑀 ) 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ↔ ∃ 𝑗 ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) |
35 |
33 34
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ∃ 𝑗 ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) |
36 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → ( 1 / 𝑀 ) ∈ ℝ ) |
37 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → 𝜑 ) |
38 |
|
eldifi |
⊢ ( 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) → 𝑡 ∈ 𝑇 ) |
39 |
38
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → 𝑡 ∈ 𝑇 ) |
40 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 1 ... 𝑀 ) ∈ Fin ) |
41 |
4 7 24
|
stoweidlem15 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) |
42 |
41
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) |
43 |
42
|
simp1d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
44 |
40 43
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
45 |
37 39 44
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
46 |
6
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
47 |
6
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑀 ) |
48 |
46 47
|
recgt0d |
⊢ ( 𝜑 → 0 < ( 1 / 𝑀 ) ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → 0 < ( 1 / 𝑀 ) ) |
50 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → 0 ∈ ℝ ) |
51 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → 𝑗 ∈ ( 1 ... 𝑀 ) ) |
52 |
37 51 39
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ) |
53 |
|
snfi |
⊢ { 𝑗 } ∈ Fin |
54 |
53
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → { 𝑗 } ∈ Fin ) |
55 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ { 𝑗 } ) → 𝜑 ) |
56 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ { 𝑗 } ) → 𝑡 ∈ 𝑇 ) |
57 |
|
elsni |
⊢ ( 𝑖 ∈ { 𝑗 } → 𝑖 = 𝑗 ) |
58 |
57
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ { 𝑗 } ) → 𝑖 = 𝑗 ) |
59 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ { 𝑗 } ) → 𝑗 ∈ ( 1 ... 𝑀 ) ) |
60 |
58 59
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ { 𝑗 } ) → 𝑖 ∈ ( 1 ... 𝑀 ) ) |
61 |
55 56 60 43
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ { 𝑗 } ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
62 |
54 61
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
63 |
52 62
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → Σ 𝑖 ∈ { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
64 |
50 63
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → ( 0 + Σ 𝑖 ∈ { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ ℝ ) |
65 |
|
fzfi |
⊢ ( 1 ... 𝑀 ) ∈ Fin |
66 |
|
diffi |
⊢ ( ( 1 ... 𝑀 ) ∈ Fin → ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ∈ Fin ) |
67 |
65 66
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ∈ Fin ) |
68 |
|
eldifi |
⊢ ( 𝑖 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) → 𝑖 ∈ ( 1 ... 𝑀 ) ) |
69 |
68 43
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
70 |
67 69
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
71 |
37 39 70
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → Σ 𝑖 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
72 |
71 63
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → ( Σ 𝑖 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) + Σ 𝑖 ∈ { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ ℝ ) |
73 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
74 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) |
75 |
4 7 24
|
stoweidlem15 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ) |
76 |
75
|
simp1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ∈ ℝ ) |
77 |
37 51 39 76
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ∈ ℝ ) |
78 |
77
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ∈ ℂ ) |
79 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) ) |
80 |
79
|
fveq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) |
81 |
80
|
sumsn |
⊢ ( ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ∈ ℂ ) → Σ 𝑖 ∈ { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) |
82 |
51 78 81
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → Σ 𝑖 ∈ { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) |
83 |
74 82
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → 0 < Σ 𝑖 ∈ { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
84 |
50 63 50 83
|
ltadd2dd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → ( 0 + 0 ) < ( 0 + Σ 𝑖 ∈ { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
85 |
73 84
|
eqbrtrrid |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → 0 < ( 0 + Σ 𝑖 ∈ { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
86 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → 0 ∈ ℝ ) |
87 |
70
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
88 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ) → 𝜑 ) |
89 |
68
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ) → 𝑖 ∈ ( 1 ... 𝑀 ) ) |
90 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ) → 𝑡 ∈ 𝑇 ) |
91 |
88 89 90 41
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ) → ( ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) |
92 |
91
|
simp2d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ) → 0 ≤ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
93 |
67 69 92
|
fsumge0 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ Σ 𝑖 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
94 |
93
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ Σ 𝑖 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
95 |
86 87 62 94
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( 0 + Σ 𝑖 ∈ { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ≤ ( Σ 𝑖 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) + Σ 𝑖 ∈ { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
96 |
52 95
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → ( 0 + Σ 𝑖 ∈ { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ≤ ( Σ 𝑖 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) + Σ 𝑖 ∈ { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
97 |
50 64 72 85 96
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → 0 < ( Σ 𝑖 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) + Σ 𝑖 ∈ { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
98 |
|
eldifn |
⊢ ( 𝑥 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) → ¬ 𝑥 ∈ { 𝑗 } ) |
99 |
|
imnan |
⊢ ( ( 𝑥 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) → ¬ 𝑥 ∈ { 𝑗 } ) ↔ ¬ ( 𝑥 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ∧ 𝑥 ∈ { 𝑗 } ) ) |
100 |
98 99
|
mpbi |
⊢ ¬ ( 𝑥 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ∧ 𝑥 ∈ { 𝑗 } ) |
101 |
|
elin |
⊢ ( 𝑥 ∈ ( ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ∩ { 𝑗 } ) ↔ ( 𝑥 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ∧ 𝑥 ∈ { 𝑗 } ) ) |
102 |
100 101
|
mtbir |
⊢ ¬ 𝑥 ∈ ( ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ∩ { 𝑗 } ) |
103 |
102
|
nel0 |
⊢ ( ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ∩ { 𝑗 } ) = ∅ |
104 |
103
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ∩ { 𝑗 } ) = ∅ ) |
105 |
|
undif1 |
⊢ ( ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ∪ { 𝑗 } ) = ( ( 1 ... 𝑀 ) ∪ { 𝑗 } ) |
106 |
|
snssi |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → { 𝑗 } ⊆ ( 1 ... 𝑀 ) ) |
107 |
106
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → { 𝑗 } ⊆ ( 1 ... 𝑀 ) ) |
108 |
|
ssequn2 |
⊢ ( { 𝑗 } ⊆ ( 1 ... 𝑀 ) ↔ ( ( 1 ... 𝑀 ) ∪ { 𝑗 } ) = ( 1 ... 𝑀 ) ) |
109 |
107 108
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 1 ... 𝑀 ) ∪ { 𝑗 } ) = ( 1 ... 𝑀 ) ) |
110 |
105 109
|
eqtr2id |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( 1 ... 𝑀 ) = ( ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ∪ { 𝑗 } ) ) |
111 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( 1 ... 𝑀 ) ∈ Fin ) |
112 |
43
|
3adantl2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
113 |
112
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℂ ) |
114 |
104 110 111 113
|
fsumsplit |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = ( Σ 𝑖 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) + Σ 𝑖 ∈ { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
115 |
52 114
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = ( Σ 𝑖 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) + Σ 𝑖 ∈ { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
116 |
97 115
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → 0 < Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
117 |
36 45 49 116
|
mulgt0d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 0 < ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → 0 < ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
118 |
31 32 35 117
|
exlimdd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → 0 < ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
119 |
4 5 6 7 24
|
stoweidlem30 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑃 ‘ 𝑡 ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
120 |
38 119
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( 𝑃 ‘ 𝑡 ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
121 |
118 120
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → 0 < ( 𝑃 ‘ 𝑡 ) ) |
122 |
121
|
ex |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) → 0 < ( 𝑃 ‘ 𝑡 ) ) ) |
123 |
2 122
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑃 ‘ 𝑡 ) ) |
124 |
28 29 123
|
3jca |
⊢ ( 𝜑 → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑃 ‘ 𝑡 ) ∧ ( 𝑃 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑃 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑃 ‘ 𝑡 ) ) ) |
125 |
|
eleq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∈ 𝐴 ↔ 𝑃 ∈ 𝐴 ) ) |
126 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
127 |
5 126
|
nfcxfr |
⊢ Ⅎ 𝑡 𝑃 |
128 |
127
|
nfeq2 |
⊢ Ⅎ 𝑡 𝑝 = 𝑃 |
129 |
|
fveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ‘ 𝑡 ) = ( 𝑃 ‘ 𝑡 ) ) |
130 |
129
|
breq2d |
⊢ ( 𝑝 = 𝑃 → ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ↔ 0 ≤ ( 𝑃 ‘ 𝑡 ) ) ) |
131 |
129
|
breq1d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ‘ 𝑡 ) ≤ 1 ↔ ( 𝑃 ‘ 𝑡 ) ≤ 1 ) ) |
132 |
130 131
|
anbi12d |
⊢ ( 𝑝 = 𝑃 → ( ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( 𝑃 ‘ 𝑡 ) ∧ ( 𝑃 ‘ 𝑡 ) ≤ 1 ) ) ) |
133 |
128 132
|
ralbid |
⊢ ( 𝑝 = 𝑃 → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑃 ‘ 𝑡 ) ∧ ( 𝑃 ‘ 𝑡 ) ≤ 1 ) ) ) |
134 |
|
fveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ‘ 𝑍 ) = ( 𝑃 ‘ 𝑍 ) ) |
135 |
134
|
eqeq1d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ‘ 𝑍 ) = 0 ↔ ( 𝑃 ‘ 𝑍 ) = 0 ) ) |
136 |
129
|
breq2d |
⊢ ( 𝑝 = 𝑃 → ( 0 < ( 𝑝 ‘ 𝑡 ) ↔ 0 < ( 𝑃 ‘ 𝑡 ) ) ) |
137 |
128 136
|
ralbid |
⊢ ( 𝑝 = 𝑃 → ( ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ↔ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑃 ‘ 𝑡 ) ) ) |
138 |
133 135 137
|
3anbi123d |
⊢ ( 𝑝 = 𝑃 → ( ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ↔ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑃 ‘ 𝑡 ) ∧ ( 𝑃 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑃 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑃 ‘ 𝑡 ) ) ) ) |
139 |
125 138
|
anbi12d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ↔ ( 𝑃 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑃 ‘ 𝑡 ) ∧ ( 𝑃 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑃 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑃 ‘ 𝑡 ) ) ) ) ) |
140 |
139
|
spcegv |
⊢ ( 𝑃 ∈ 𝐴 → ( ( 𝑃 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑃 ‘ 𝑡 ) ∧ ( 𝑃 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑃 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑃 ‘ 𝑡 ) ) ) → ∃ 𝑝 ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) ) |
141 |
25 140
|
syl |
⊢ ( 𝜑 → ( ( 𝑃 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑃 ‘ 𝑡 ) ∧ ( 𝑃 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑃 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑃 ‘ 𝑡 ) ) ) → ∃ 𝑝 ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) ) |
142 |
25 124 141
|
mp2and |
⊢ ( 𝜑 → ∃ 𝑝 ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) |
143 |
|
df-rex |
⊢ ( ∃ 𝑝 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ↔ ∃ 𝑝 ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) |
144 |
142 143
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑝 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) |