| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem45.1 |
⊢ Ⅎ 𝑡 𝑃 |
| 2 |
|
stoweidlem45.2 |
⊢ Ⅎ 𝑡 𝜑 |
| 3 |
|
stoweidlem45.3 |
⊢ 𝑉 = { 𝑡 ∈ 𝑇 ∣ ( 𝑃 ‘ 𝑡 ) < ( 𝐷 / 2 ) } |
| 4 |
|
stoweidlem45.4 |
⊢ 𝑄 = ( 𝑡 ∈ 𝑇 ↦ ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) |
| 5 |
|
stoweidlem45.5 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 6 |
|
stoweidlem45.6 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
| 7 |
|
stoweidlem45.7 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ+ ) |
| 8 |
|
stoweidlem45.8 |
⊢ ( 𝜑 → 𝐷 < 1 ) |
| 9 |
|
stoweidlem45.9 |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
| 10 |
|
stoweidlem45.10 |
⊢ ( 𝜑 → 𝑃 : 𝑇 ⟶ ℝ ) |
| 11 |
|
stoweidlem45.11 |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑃 ‘ 𝑡 ) ∧ ( 𝑃 ‘ 𝑡 ) ≤ 1 ) ) |
| 12 |
|
stoweidlem45.12 |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝐷 ≤ ( 𝑃 ‘ 𝑡 ) ) |
| 13 |
|
stoweidlem45.13 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
| 14 |
|
stoweidlem45.14 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 15 |
|
stoweidlem45.15 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 16 |
|
stoweidlem45.16 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
| 17 |
|
stoweidlem45.17 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 18 |
|
stoweidlem45.18 |
⊢ ( 𝜑 → ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝐾 · 𝐷 ) / 2 ) ↑ 𝑁 ) ) ) |
| 19 |
|
stoweidlem45.19 |
⊢ ( 𝜑 → ( 1 / ( ( 𝐾 · 𝐷 ) ↑ 𝑁 ) ) < 𝐸 ) |
| 20 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ) |
| 21 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ 1 ) = ( 𝑡 ∈ 𝑇 ↦ 1 ) |
| 22 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) |
| 23 |
5
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 24 |
6 23
|
nnexpcld |
⊢ ( 𝜑 → ( 𝐾 ↑ 𝑁 ) ∈ ℕ ) |
| 25 |
1 2 4 20 21 22 9 10 13 14 15 16 5 24
|
stoweidlem40 |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
| 26 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 1 ∈ ℝ ) |
| 27 |
10
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑃 ‘ 𝑡 ) ∈ ℝ ) |
| 28 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑁 ∈ ℕ0 ) |
| 29 |
27 28
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ∈ ℝ ) |
| 30 |
26 29
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ∈ ℝ ) |
| 31 |
6
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 32 |
31 23
|
nn0expcld |
⊢ ( 𝜑 → ( 𝐾 ↑ 𝑁 ) ∈ ℕ0 ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐾 ↑ 𝑁 ) ∈ ℕ0 ) |
| 34 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 35 |
11
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 0 ≤ ( 𝑃 ‘ 𝑡 ) ∧ ( 𝑃 ‘ 𝑡 ) ≤ 1 ) ) |
| 36 |
35
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( 𝑃 ‘ 𝑡 ) ) |
| 37 |
35
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑃 ‘ 𝑡 ) ≤ 1 ) |
| 38 |
|
exple1 |
⊢ ( ( ( ( 𝑃 ‘ 𝑡 ) ∈ ℝ ∧ 0 ≤ ( 𝑃 ‘ 𝑡 ) ∧ ( 𝑃 ‘ 𝑡 ) ≤ 1 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ≤ 1 ) |
| 39 |
27 36 37 28 38
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ≤ 1 ) |
| 40 |
29 26 26 39
|
lesub2dd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 1 − 1 ) ≤ ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ) |
| 41 |
34 40
|
eqbrtrrid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ) |
| 42 |
30 33 41
|
expge0d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) |
| 43 |
4 10 23 31
|
stoweidlem12 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑄 ‘ 𝑡 ) = ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) |
| 44 |
42 43
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( 𝑄 ‘ 𝑡 ) ) |
| 45 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 0 ∈ ℝ ) |
| 46 |
27 28 36
|
expge0d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) |
| 47 |
45 29 26 46
|
lesub2dd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ≤ ( 1 − 0 ) ) |
| 48 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
| 49 |
47 48
|
breqtrdi |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ≤ 1 ) |
| 50 |
|
exple1 |
⊢ ( ( ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ∈ ℝ ∧ 0 ≤ ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ∧ ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ≤ 1 ) ∧ ( 𝐾 ↑ 𝑁 ) ∈ ℕ0 ) → ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ≤ 1 ) |
| 51 |
30 41 49 33 50
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ≤ 1 ) |
| 52 |
43 51
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑄 ‘ 𝑡 ) ≤ 1 ) |
| 53 |
44 52
|
jca |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 0 ≤ ( 𝑄 ‘ 𝑡 ) ∧ ( 𝑄 ‘ 𝑡 ) ≤ 1 ) ) |
| 54 |
53
|
ex |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 → ( 0 ≤ ( 𝑄 ‘ 𝑡 ) ∧ ( 𝑄 ‘ 𝑡 ) ≤ 1 ) ) ) |
| 55 |
2 54
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑄 ‘ 𝑡 ) ∧ ( 𝑄 ‘ 𝑡 ) ≤ 1 ) ) |
| 56 |
3 4 10 23 31 7 17 18 11
|
stoweidlem24 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑉 ) → ( 1 − 𝐸 ) < ( 𝑄 ‘ 𝑡 ) ) |
| 57 |
56
|
ex |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑉 → ( 1 − 𝐸 ) < ( 𝑄 ‘ 𝑡 ) ) ) |
| 58 |
2 57
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑉 ( 1 − 𝐸 ) < ( 𝑄 ‘ 𝑡 ) ) |
| 59 |
4 5 6 7 10 11 12 17 19
|
stoweidlem25 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( 𝑄 ‘ 𝑡 ) < 𝐸 ) |
| 60 |
59
|
ex |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) → ( 𝑄 ‘ 𝑡 ) < 𝐸 ) ) |
| 61 |
2 60
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 𝑄 ‘ 𝑡 ) < 𝐸 ) |
| 62 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) |
| 63 |
4 62
|
nfcxfr |
⊢ Ⅎ 𝑡 𝑄 |
| 64 |
63
|
nfeq2 |
⊢ Ⅎ 𝑡 𝑦 = 𝑄 |
| 65 |
|
fveq1 |
⊢ ( 𝑦 = 𝑄 → ( 𝑦 ‘ 𝑡 ) = ( 𝑄 ‘ 𝑡 ) ) |
| 66 |
65
|
breq2d |
⊢ ( 𝑦 = 𝑄 → ( 0 ≤ ( 𝑦 ‘ 𝑡 ) ↔ 0 ≤ ( 𝑄 ‘ 𝑡 ) ) ) |
| 67 |
65
|
breq1d |
⊢ ( 𝑦 = 𝑄 → ( ( 𝑦 ‘ 𝑡 ) ≤ 1 ↔ ( 𝑄 ‘ 𝑡 ) ≤ 1 ) ) |
| 68 |
66 67
|
anbi12d |
⊢ ( 𝑦 = 𝑄 → ( ( 0 ≤ ( 𝑦 ‘ 𝑡 ) ∧ ( 𝑦 ‘ 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( 𝑄 ‘ 𝑡 ) ∧ ( 𝑄 ‘ 𝑡 ) ≤ 1 ) ) ) |
| 69 |
64 68
|
ralbid |
⊢ ( 𝑦 = 𝑄 → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑦 ‘ 𝑡 ) ∧ ( 𝑦 ‘ 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑄 ‘ 𝑡 ) ∧ ( 𝑄 ‘ 𝑡 ) ≤ 1 ) ) ) |
| 70 |
65
|
breq2d |
⊢ ( 𝑦 = 𝑄 → ( ( 1 − 𝐸 ) < ( 𝑦 ‘ 𝑡 ) ↔ ( 1 − 𝐸 ) < ( 𝑄 ‘ 𝑡 ) ) ) |
| 71 |
64 70
|
ralbid |
⊢ ( 𝑦 = 𝑄 → ( ∀ 𝑡 ∈ 𝑉 ( 1 − 𝐸 ) < ( 𝑦 ‘ 𝑡 ) ↔ ∀ 𝑡 ∈ 𝑉 ( 1 − 𝐸 ) < ( 𝑄 ‘ 𝑡 ) ) ) |
| 72 |
65
|
breq1d |
⊢ ( 𝑦 = 𝑄 → ( ( 𝑦 ‘ 𝑡 ) < 𝐸 ↔ ( 𝑄 ‘ 𝑡 ) < 𝐸 ) ) |
| 73 |
64 72
|
ralbid |
⊢ ( 𝑦 = 𝑄 → ( ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 𝑦 ‘ 𝑡 ) < 𝐸 ↔ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 𝑄 ‘ 𝑡 ) < 𝐸 ) ) |
| 74 |
69 71 73
|
3anbi123d |
⊢ ( 𝑦 = 𝑄 → ( ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑦 ‘ 𝑡 ) ∧ ( 𝑦 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑉 ( 1 − 𝐸 ) < ( 𝑦 ‘ 𝑡 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 𝑦 ‘ 𝑡 ) < 𝐸 ) ↔ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑄 ‘ 𝑡 ) ∧ ( 𝑄 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑉 ( 1 − 𝐸 ) < ( 𝑄 ‘ 𝑡 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 𝑄 ‘ 𝑡 ) < 𝐸 ) ) ) |
| 75 |
74
|
rspcev |
⊢ ( ( 𝑄 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑄 ‘ 𝑡 ) ∧ ( 𝑄 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑉 ( 1 − 𝐸 ) < ( 𝑄 ‘ 𝑡 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 𝑄 ‘ 𝑡 ) < 𝐸 ) ) → ∃ 𝑦 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑦 ‘ 𝑡 ) ∧ ( 𝑦 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑉 ( 1 − 𝐸 ) < ( 𝑦 ‘ 𝑡 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 𝑦 ‘ 𝑡 ) < 𝐸 ) ) |
| 76 |
25 55 58 61 75
|
syl13anc |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑦 ‘ 𝑡 ) ∧ ( 𝑦 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑉 ( 1 − 𝐸 ) < ( 𝑦 ‘ 𝑡 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 𝑦 ‘ 𝑡 ) < 𝐸 ) ) |