| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem46.1 |
⊢ Ⅎ 𝑡 𝑈 |
| 2 |
|
stoweidlem46.2 |
⊢ Ⅎ ℎ 𝑄 |
| 3 |
|
stoweidlem46.3 |
⊢ Ⅎ 𝑞 𝜑 |
| 4 |
|
stoweidlem46.4 |
⊢ Ⅎ 𝑡 𝜑 |
| 5 |
|
stoweidlem46.5 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
| 6 |
|
stoweidlem46.6 |
⊢ 𝑄 = { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } |
| 7 |
|
stoweidlem46.7 |
⊢ 𝑊 = { 𝑤 ∈ 𝐽 ∣ ∃ ℎ ∈ 𝑄 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } |
| 8 |
|
stoweidlem46.8 |
⊢ 𝑇 = ∪ 𝐽 |
| 9 |
|
stoweidlem46.9 |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
| 10 |
|
stoweidlem46.10 |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝐽 Cn 𝐾 ) ) |
| 11 |
|
stoweidlem46.11 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 12 |
|
stoweidlem46.12 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 13 |
|
stoweidlem46.13 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
| 14 |
|
stoweidlem46.14 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ‘ 𝑟 ) ≠ ( 𝑞 ‘ 𝑡 ) ) |
| 15 |
|
stoweidlem46.15 |
⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) |
| 16 |
|
stoweidlem46.16 |
⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) |
| 17 |
|
stoweidlem46.17 |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
| 18 |
|
nfv |
⊢ Ⅎ 𝑞 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) |
| 19 |
3 18
|
nfan |
⊢ Ⅎ 𝑞 ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) |
| 20 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑇 |
| 21 |
20 1
|
nfdif |
⊢ Ⅎ 𝑡 ( 𝑇 ∖ 𝑈 ) |
| 22 |
21
|
nfel2 |
⊢ Ⅎ 𝑡 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) |
| 23 |
4 22
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) |
| 24 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) → 𝐽 ∈ Comp ) |
| 25 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) → 𝐴 ⊆ ( 𝐽 Cn 𝐾 ) ) |
| 26 |
11
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 27 |
12
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 28 |
13
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
| 29 |
14
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ‘ 𝑟 ) ≠ ( 𝑞 ‘ 𝑡 ) ) |
| 30 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) → 𝑈 ∈ 𝐽 ) |
| 31 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) → 𝑍 ∈ 𝑈 ) |
| 32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) → 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) |
| 33 |
19 23 2 5 6 8 24 25 26 27 28 29 30 31 32
|
stoweidlem43 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) → ∃ ℎ ( ℎ ∈ 𝑄 ∧ 0 < ( ℎ ‘ 𝑠 ) ) ) |
| 34 |
|
nfv |
⊢ Ⅎ 𝑔 ( ℎ ∈ 𝑄 ∧ 0 < ( ℎ ‘ 𝑠 ) ) |
| 35 |
2
|
nfel2 |
⊢ Ⅎ ℎ 𝑔 ∈ 𝑄 |
| 36 |
|
nfv |
⊢ Ⅎ ℎ 0 < ( 𝑔 ‘ 𝑠 ) |
| 37 |
35 36
|
nfan |
⊢ Ⅎ ℎ ( 𝑔 ∈ 𝑄 ∧ 0 < ( 𝑔 ‘ 𝑠 ) ) |
| 38 |
|
eleq1 |
⊢ ( ℎ = 𝑔 → ( ℎ ∈ 𝑄 ↔ 𝑔 ∈ 𝑄 ) ) |
| 39 |
|
fveq1 |
⊢ ( ℎ = 𝑔 → ( ℎ ‘ 𝑠 ) = ( 𝑔 ‘ 𝑠 ) ) |
| 40 |
39
|
breq2d |
⊢ ( ℎ = 𝑔 → ( 0 < ( ℎ ‘ 𝑠 ) ↔ 0 < ( 𝑔 ‘ 𝑠 ) ) ) |
| 41 |
38 40
|
anbi12d |
⊢ ( ℎ = 𝑔 → ( ( ℎ ∈ 𝑄 ∧ 0 < ( ℎ ‘ 𝑠 ) ) ↔ ( 𝑔 ∈ 𝑄 ∧ 0 < ( 𝑔 ‘ 𝑠 ) ) ) ) |
| 42 |
34 37 41
|
cbvexv1 |
⊢ ( ∃ ℎ ( ℎ ∈ 𝑄 ∧ 0 < ( ℎ ‘ 𝑠 ) ) ↔ ∃ 𝑔 ( 𝑔 ∈ 𝑄 ∧ 0 < ( 𝑔 ‘ 𝑠 ) ) ) |
| 43 |
33 42
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) → ∃ 𝑔 ( 𝑔 ∈ 𝑄 ∧ 0 < ( 𝑔 ‘ 𝑠 ) ) ) |
| 44 |
|
rabexg |
⊢ ( 𝑇 ∈ V → { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ∈ V ) |
| 45 |
17 44
|
syl |
⊢ ( 𝜑 → { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ∈ V ) |
| 46 |
45
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑔 ∈ 𝑄 ∧ 0 < ( 𝑔 ‘ 𝑠 ) ) ) → { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ∈ V ) |
| 47 |
|
eldifi |
⊢ ( 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) → 𝑠 ∈ 𝑇 ) |
| 48 |
47
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑔 ∈ 𝑄 ∧ 0 < ( 𝑔 ‘ 𝑠 ) ) ) → 𝑠 ∈ 𝑇 ) |
| 49 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑔 ∈ 𝑄 ∧ 0 < ( 𝑔 ‘ 𝑠 ) ) ) → 0 < ( 𝑔 ‘ 𝑠 ) ) |
| 50 |
|
fveq2 |
⊢ ( 𝑡 = 𝑠 → ( 𝑔 ‘ 𝑡 ) = ( 𝑔 ‘ 𝑠 ) ) |
| 51 |
50
|
breq2d |
⊢ ( 𝑡 = 𝑠 → ( 0 < ( 𝑔 ‘ 𝑡 ) ↔ 0 < ( 𝑔 ‘ 𝑠 ) ) ) |
| 52 |
51
|
elrab |
⊢ ( 𝑠 ∈ { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ↔ ( 𝑠 ∈ 𝑇 ∧ 0 < ( 𝑔 ‘ 𝑠 ) ) ) |
| 53 |
48 49 52
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑔 ∈ 𝑄 ∧ 0 < ( 𝑔 ‘ 𝑠 ) ) ) → 𝑠 ∈ { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ) |
| 54 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑔 ∈ 𝑄 ∧ 0 < ( 𝑔 ‘ 𝑠 ) ) ) → 𝜑 ) |
| 55 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑄 ) → 𝐴 ⊆ ( 𝐽 Cn 𝐾 ) ) |
| 56 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑄 ) → 𝑔 ∈ 𝑄 ) |
| 57 |
56 6
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑄 ) → 𝑔 ∈ { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } ) |
| 58 |
|
fveq1 |
⊢ ( ℎ = 𝑔 → ( ℎ ‘ 𝑍 ) = ( 𝑔 ‘ 𝑍 ) ) |
| 59 |
58
|
eqeq1d |
⊢ ( ℎ = 𝑔 → ( ( ℎ ‘ 𝑍 ) = 0 ↔ ( 𝑔 ‘ 𝑍 ) = 0 ) ) |
| 60 |
|
fveq1 |
⊢ ( ℎ = 𝑔 → ( ℎ ‘ 𝑡 ) = ( 𝑔 ‘ 𝑡 ) ) |
| 61 |
60
|
breq2d |
⊢ ( ℎ = 𝑔 → ( 0 ≤ ( ℎ ‘ 𝑡 ) ↔ 0 ≤ ( 𝑔 ‘ 𝑡 ) ) ) |
| 62 |
60
|
breq1d |
⊢ ( ℎ = 𝑔 → ( ( ℎ ‘ 𝑡 ) ≤ 1 ↔ ( 𝑔 ‘ 𝑡 ) ≤ 1 ) ) |
| 63 |
61 62
|
anbi12d |
⊢ ( ℎ = 𝑔 → ( ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( 𝑔 ‘ 𝑡 ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ 1 ) ) ) |
| 64 |
63
|
ralbidv |
⊢ ( ℎ = 𝑔 → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑔 ‘ 𝑡 ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ 1 ) ) ) |
| 65 |
59 64
|
anbi12d |
⊢ ( ℎ = 𝑔 → ( ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) ↔ ( ( 𝑔 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑔 ‘ 𝑡 ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ 1 ) ) ) ) |
| 66 |
65
|
elrab |
⊢ ( 𝑔 ∈ { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } ↔ ( 𝑔 ∈ 𝐴 ∧ ( ( 𝑔 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑔 ‘ 𝑡 ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ 1 ) ) ) ) |
| 67 |
57 66
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑄 ) → ( 𝑔 ∈ 𝐴 ∧ ( ( 𝑔 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑔 ‘ 𝑡 ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ 1 ) ) ) ) |
| 68 |
67
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑄 ) → 𝑔 ∈ 𝐴 ) |
| 69 |
55 68
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑄 ) → 𝑔 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 70 |
69
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑔 ∈ 𝑄 ∧ 0 < ( 𝑔 ‘ 𝑠 ) ) ) → 𝑔 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 71 |
|
nfcv |
⊢ Ⅎ 𝑡 0 |
| 72 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑔 |
| 73 |
|
nfv |
⊢ Ⅎ 𝑡 𝑔 ∈ ( 𝐽 Cn 𝐾 ) |
| 74 |
4 73
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑔 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 75 |
|
eqid |
⊢ { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } = { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } |
| 76 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 77 |
76
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐽 Cn 𝐾 ) ) → 0 ∈ ℝ* ) |
| 78 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝑔 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 79 |
71 72 74 5 8 75 77 78
|
rfcnpre1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐽 Cn 𝐾 ) ) → { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ∈ 𝐽 ) |
| 80 |
54 70 79
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑔 ∈ 𝑄 ∧ 0 < ( 𝑔 ‘ 𝑠 ) ) ) → { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ∈ 𝐽 ) |
| 81 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑄 ) → { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } = { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ) |
| 82 |
|
nfv |
⊢ Ⅎ ℎ { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } = { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } |
| 83 |
|
nfcv |
⊢ Ⅎ ℎ 𝑔 |
| 84 |
60
|
breq2d |
⊢ ( ℎ = 𝑔 → ( 0 < ( ℎ ‘ 𝑡 ) ↔ 0 < ( 𝑔 ‘ 𝑡 ) ) ) |
| 85 |
84
|
rabbidv |
⊢ ( ℎ = 𝑔 → { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } = { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ) |
| 86 |
85
|
eqeq2d |
⊢ ( ℎ = 𝑔 → ( { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } ↔ { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } = { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ) ) |
| 87 |
82 83 2 86
|
rspcegf |
⊢ ( ( 𝑔 ∈ 𝑄 ∧ { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } = { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ) → ∃ ℎ ∈ 𝑄 { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } ) |
| 88 |
56 81 87
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑄 ) → ∃ ℎ ∈ 𝑄 { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } ) |
| 89 |
88
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑔 ∈ 𝑄 ∧ 0 < ( 𝑔 ‘ 𝑠 ) ) ) → ∃ ℎ ∈ 𝑄 { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } ) |
| 90 |
|
eqeq1 |
⊢ ( 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } → ( 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } ↔ { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } ) ) |
| 91 |
90
|
rexbidv |
⊢ ( 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } → ( ∃ ℎ ∈ 𝑄 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } ↔ ∃ ℎ ∈ 𝑄 { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } ) ) |
| 92 |
91
|
elrab |
⊢ ( { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ∈ { 𝑤 ∈ 𝐽 ∣ ∃ ℎ ∈ 𝑄 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ↔ ( { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ∈ 𝐽 ∧ ∃ ℎ ∈ 𝑄 { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } ) ) |
| 93 |
80 89 92
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑔 ∈ 𝑄 ∧ 0 < ( 𝑔 ‘ 𝑠 ) ) ) → { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ∈ { 𝑤 ∈ 𝐽 ∣ ∃ ℎ ∈ 𝑄 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) |
| 94 |
93 7
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑔 ∈ 𝑄 ∧ 0 < ( 𝑔 ‘ 𝑠 ) ) ) → { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ∈ 𝑊 ) |
| 95 |
|
nfcv |
⊢ Ⅎ 𝑤 { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } |
| 96 |
|
nfv |
⊢ Ⅎ 𝑤 𝑠 ∈ { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } |
| 97 |
|
nfrab1 |
⊢ Ⅎ 𝑤 { 𝑤 ∈ 𝐽 ∣ ∃ ℎ ∈ 𝑄 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } |
| 98 |
7 97
|
nfcxfr |
⊢ Ⅎ 𝑤 𝑊 |
| 99 |
98
|
nfel2 |
⊢ Ⅎ 𝑤 { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ∈ 𝑊 |
| 100 |
96 99
|
nfan |
⊢ Ⅎ 𝑤 ( 𝑠 ∈ { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ∧ { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ∈ 𝑊 ) |
| 101 |
|
eleq2 |
⊢ ( 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } → ( 𝑠 ∈ 𝑤 ↔ 𝑠 ∈ { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ) ) |
| 102 |
|
eleq1 |
⊢ ( 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } → ( 𝑤 ∈ 𝑊 ↔ { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ∈ 𝑊 ) ) |
| 103 |
101 102
|
anbi12d |
⊢ ( 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } → ( ( 𝑠 ∈ 𝑤 ∧ 𝑤 ∈ 𝑊 ) ↔ ( 𝑠 ∈ { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ∧ { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ∈ 𝑊 ) ) ) |
| 104 |
95 100 103
|
spcegf |
⊢ ( { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ∈ V → ( ( 𝑠 ∈ { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ∧ { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ∈ 𝑊 ) → ∃ 𝑤 ( 𝑠 ∈ 𝑤 ∧ 𝑤 ∈ 𝑊 ) ) ) |
| 105 |
104
|
imp |
⊢ ( ( { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ∈ V ∧ ( 𝑠 ∈ { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ∧ { 𝑡 ∈ 𝑇 ∣ 0 < ( 𝑔 ‘ 𝑡 ) } ∈ 𝑊 ) ) → ∃ 𝑤 ( 𝑠 ∈ 𝑤 ∧ 𝑤 ∈ 𝑊 ) ) |
| 106 |
46 53 94 105
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ( 𝑔 ∈ 𝑄 ∧ 0 < ( 𝑔 ‘ 𝑠 ) ) ) → ∃ 𝑤 ( 𝑠 ∈ 𝑤 ∧ 𝑤 ∈ 𝑊 ) ) |
| 107 |
43 106
|
exlimddv |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) → ∃ 𝑤 ( 𝑠 ∈ 𝑤 ∧ 𝑤 ∈ 𝑊 ) ) |
| 108 |
|
nfcv |
⊢ Ⅎ 𝑤 𝑠 |
| 109 |
108 98
|
elunif |
⊢ ( 𝑠 ∈ ∪ 𝑊 ↔ ∃ 𝑤 ( 𝑠 ∈ 𝑤 ∧ 𝑤 ∈ 𝑊 ) ) |
| 110 |
107 109
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) ) → 𝑠 ∈ ∪ 𝑊 ) |
| 111 |
110
|
ex |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝑇 ∖ 𝑈 ) → 𝑠 ∈ ∪ 𝑊 ) ) |
| 112 |
111
|
ssrdv |
⊢ ( 𝜑 → ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑊 ) |