| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem48.1 |
⊢ Ⅎ 𝑖 𝜑 |
| 2 |
|
stoweidlem48.2 |
⊢ Ⅎ 𝑡 𝜑 |
| 3 |
|
stoweidlem48.3 |
⊢ 𝑌 = { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } |
| 4 |
|
stoweidlem48.4 |
⊢ 𝑃 = ( 𝑓 ∈ 𝑌 , 𝑔 ∈ 𝑌 ↦ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 5 |
|
stoweidlem48.5 |
⊢ 𝑋 = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) |
| 6 |
|
stoweidlem48.6 |
⊢ 𝐹 = ( 𝑡 ∈ 𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 7 |
|
stoweidlem48.7 |
⊢ 𝑍 = ( 𝑡 ∈ 𝑇 ↦ ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) |
| 8 |
|
stoweidlem48.8 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 9 |
|
stoweidlem48.9 |
⊢ ( 𝜑 → 𝑊 : ( 1 ... 𝑀 ) ⟶ 𝑉 ) |
| 10 |
|
stoweidlem48.10 |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑀 ) ⟶ 𝑌 ) |
| 11 |
|
stoweidlem48.11 |
⊢ ( 𝜑 → 𝐷 ⊆ ∪ ran 𝑊 ) |
| 12 |
|
stoweidlem48.12 |
⊢ ( 𝜑 → 𝐷 ⊆ 𝑇 ) |
| 13 |
|
stoweidlem48.13 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) < 𝐸 ) |
| 14 |
|
stoweidlem48.14 |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
| 15 |
|
stoweidlem48.15 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
| 16 |
|
stoweidlem48.16 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 17 |
|
stoweidlem48.17 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 18 |
12
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → 𝑡 ∈ 𝑇 ) |
| 19 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) |
| 20 |
|
nfcv |
⊢ Ⅎ 𝑡 𝐴 |
| 21 |
19 20
|
nfrabw |
⊢ Ⅎ 𝑡 { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } |
| 22 |
3 21
|
nfcxfr |
⊢ Ⅎ 𝑡 𝑌 |
| 23 |
3
|
eleq2i |
⊢ ( 𝑓 ∈ 𝑌 ↔ 𝑓 ∈ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } ) |
| 24 |
|
fveq1 |
⊢ ( ℎ = 𝑓 → ( ℎ ‘ 𝑡 ) = ( 𝑓 ‘ 𝑡 ) ) |
| 25 |
24
|
breq2d |
⊢ ( ℎ = 𝑓 → ( 0 ≤ ( ℎ ‘ 𝑡 ) ↔ 0 ≤ ( 𝑓 ‘ 𝑡 ) ) ) |
| 26 |
24
|
breq1d |
⊢ ( ℎ = 𝑓 → ( ( ℎ ‘ 𝑡 ) ≤ 1 ↔ ( 𝑓 ‘ 𝑡 ) ≤ 1 ) ) |
| 27 |
25 26
|
anbi12d |
⊢ ( ℎ = 𝑓 → ( ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( 𝑓 ‘ 𝑡 ) ∧ ( 𝑓 ‘ 𝑡 ) ≤ 1 ) ) ) |
| 28 |
27
|
ralbidv |
⊢ ( ℎ = 𝑓 → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑓 ‘ 𝑡 ) ∧ ( 𝑓 ‘ 𝑡 ) ≤ 1 ) ) ) |
| 29 |
28
|
elrab |
⊢ ( 𝑓 ∈ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } ↔ ( 𝑓 ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑓 ‘ 𝑡 ) ∧ ( 𝑓 ‘ 𝑡 ) ≤ 1 ) ) ) |
| 30 |
23 29
|
sylbb |
⊢ ( 𝑓 ∈ 𝑌 → ( 𝑓 ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑓 ‘ 𝑡 ) ∧ ( 𝑓 ‘ 𝑡 ) ≤ 1 ) ) ) |
| 31 |
30
|
simpld |
⊢ ( 𝑓 ∈ 𝑌 → 𝑓 ∈ 𝐴 ) |
| 32 |
31 15
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
| 33 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) |
| 34 |
2 3 33 15 16
|
stoweidlem16 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝑌 ) |
| 35 |
1 22 4 5 6 7 14 8 10 32 34
|
fmuldfeq |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑋 ‘ 𝑡 ) = ( 𝑍 ‘ 𝑡 ) ) |
| 36 |
18 35
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑡 ) = ( 𝑍 ‘ 𝑡 ) ) |
| 37 |
|
elnnuz |
⊢ ( 𝑀 ∈ ℕ ↔ 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 38 |
8 37
|
sylib |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 40 |
|
nfv |
⊢ Ⅎ 𝑖 𝑡 ∈ 𝑇 |
| 41 |
1 40
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) |
| 42 |
10
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈 ‘ 𝑖 ) ∈ 𝑌 ) |
| 43 |
|
fveq1 |
⊢ ( ℎ = ( 𝑈 ‘ 𝑖 ) → ( ℎ ‘ 𝑡 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 44 |
43
|
breq2d |
⊢ ( ℎ = ( 𝑈 ‘ 𝑖 ) → ( 0 ≤ ( ℎ ‘ 𝑡 ) ↔ 0 ≤ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 45 |
43
|
breq1d |
⊢ ( ℎ = ( 𝑈 ‘ 𝑖 ) → ( ( ℎ ‘ 𝑡 ) ≤ 1 ↔ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) |
| 46 |
44 45
|
anbi12d |
⊢ ( ℎ = ( 𝑈 ‘ 𝑖 ) → ( ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
| 47 |
46
|
ralbidv |
⊢ ( ℎ = ( 𝑈 ‘ 𝑖 ) → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
| 48 |
47 3
|
elrab2 |
⊢ ( ( 𝑈 ‘ 𝑖 ) ∈ 𝑌 ↔ ( ( 𝑈 ‘ 𝑖 ) ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
| 49 |
42 48
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑈 ‘ 𝑖 ) ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
| 50 |
49
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈 ‘ 𝑖 ) ∈ 𝐴 ) |
| 51 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝜑 ) |
| 52 |
51 50
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝜑 ∧ ( 𝑈 ‘ 𝑖 ) ∈ 𝐴 ) ) |
| 53 |
|
eleq1 |
⊢ ( 𝑓 = ( 𝑈 ‘ 𝑖 ) → ( 𝑓 ∈ 𝐴 ↔ ( 𝑈 ‘ 𝑖 ) ∈ 𝐴 ) ) |
| 54 |
53
|
anbi2d |
⊢ ( 𝑓 = ( 𝑈 ‘ 𝑖 ) → ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ↔ ( 𝜑 ∧ ( 𝑈 ‘ 𝑖 ) ∈ 𝐴 ) ) ) |
| 55 |
|
feq1 |
⊢ ( 𝑓 = ( 𝑈 ‘ 𝑖 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) |
| 56 |
54 55
|
imbi12d |
⊢ ( 𝑓 = ( 𝑈 ‘ 𝑖 ) → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑖 ) ∈ 𝐴 ) → ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) ) |
| 57 |
56 15
|
vtoclg |
⊢ ( ( 𝑈 ‘ 𝑖 ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑖 ) ∈ 𝐴 ) → ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) |
| 58 |
50 52 57
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) |
| 59 |
58
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) |
| 60 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑡 ∈ 𝑇 ) |
| 61 |
59 60
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
| 62 |
|
eqid |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 63 |
41 61 62
|
fmptdf |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) : ( 1 ... 𝑀 ) ⟶ ℝ ) |
| 64 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
| 65 |
|
ovex |
⊢ ( 1 ... 𝑀 ) ∈ V |
| 66 |
|
mptexg |
⊢ ( ( 1 ... 𝑀 ) ∈ V → ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ V ) |
| 67 |
65 66
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ V ) |
| 68 |
6
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ V ) → ( 𝐹 ‘ 𝑡 ) = ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 69 |
64 67 68
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) = ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 70 |
69
|
feq1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑡 ) : ( 1 ... 𝑀 ) ⟶ ℝ ↔ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) : ( 1 ... 𝑀 ) ⟶ ℝ ) ) |
| 71 |
63 70
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) : ( 1 ... 𝑀 ) ⟶ ℝ ) |
| 72 |
18 71
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) : ( 1 ... 𝑀 ) ⟶ ℝ ) |
| 73 |
72
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑘 ) ∈ ℝ ) |
| 74 |
|
remulcl |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑘 · 𝑗 ) ∈ ℝ ) |
| 75 |
74
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ ( 𝑘 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) → ( 𝑘 · 𝑗 ) ∈ ℝ ) |
| 76 |
39 73 75
|
seqcl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ∈ ℝ ) |
| 77 |
7
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ∈ ℝ ) → ( 𝑍 ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) |
| 78 |
18 76 77
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( 𝑍 ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) |
| 79 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑇 |
| 80 |
|
nfmpt1 |
⊢ Ⅎ 𝑖 ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 81 |
79 80
|
nfmpt |
⊢ Ⅎ 𝑖 ( 𝑡 ∈ 𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 82 |
6 81
|
nfcxfr |
⊢ Ⅎ 𝑖 𝐹 |
| 83 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑡 |
| 84 |
82 83
|
nffv |
⊢ Ⅎ 𝑖 ( 𝐹 ‘ 𝑡 ) |
| 85 |
|
nfv |
⊢ Ⅎ 𝑖 𝑡 ∈ 𝐷 |
| 86 |
1 85
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) |
| 87 |
|
nfcv |
⊢ Ⅎ 𝑗 seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) |
| 88 |
|
eqid |
⊢ seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) = seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) |
| 89 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → 𝑀 ∈ ℕ ) |
| 90 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝜑 ) |
| 91 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑖 ∈ ( 1 ... 𝑀 ) ) |
| 92 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑡 ∈ 𝑇 ) |
| 93 |
49
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) |
| 94 |
93
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 0 ≤ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) |
| 95 |
94
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 96 |
90 91 92 95
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 0 ≤ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 97 |
69
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) ) |
| 98 |
90 92 97
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) ) |
| 99 |
90 92 91 61
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
| 100 |
62
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) → ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 101 |
91 99 100
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 102 |
98 101
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 103 |
96 102
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) ) |
| 104 |
94
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) |
| 105 |
90 91 92 104
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) |
| 106 |
102 105
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) ≤ 1 ) |
| 107 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → 𝐸 ∈ ℝ+ ) |
| 108 |
11
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → 𝑡 ∈ ∪ ran 𝑊 ) |
| 109 |
|
eluni |
⊢ ( 𝑡 ∈ ∪ ran 𝑊 ↔ ∃ 𝑤 ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ ran 𝑊 ) ) |
| 110 |
108 109
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ∃ 𝑤 ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ ran 𝑊 ) ) |
| 111 |
|
ffn |
⊢ ( 𝑊 : ( 1 ... 𝑀 ) ⟶ 𝑉 → 𝑊 Fn ( 1 ... 𝑀 ) ) |
| 112 |
|
fvelrnb |
⊢ ( 𝑊 Fn ( 1 ... 𝑀 ) → ( 𝑤 ∈ ran 𝑊 ↔ ∃ 𝑗 ∈ ( 1 ... 𝑀 ) ( 𝑊 ‘ 𝑗 ) = 𝑤 ) ) |
| 113 |
9 111 112
|
3syl |
⊢ ( 𝜑 → ( 𝑤 ∈ ran 𝑊 ↔ ∃ 𝑗 ∈ ( 1 ... 𝑀 ) ( 𝑊 ‘ 𝑗 ) = 𝑤 ) ) |
| 114 |
113
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ran 𝑊 ) → ∃ 𝑗 ∈ ( 1 ... 𝑀 ) ( 𝑊 ‘ 𝑗 ) = 𝑤 ) |
| 115 |
114
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ ran 𝑊 ) ) → ∃ 𝑗 ∈ ( 1 ... 𝑀 ) ( 𝑊 ‘ 𝑗 ) = 𝑤 ) |
| 116 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑤 ) ∧ ( 𝑊 ‘ 𝑗 ) = 𝑤 ) → 𝑡 ∈ 𝑤 ) |
| 117 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑤 ) ∧ ( 𝑊 ‘ 𝑗 ) = 𝑤 ) → ( 𝑊 ‘ 𝑗 ) = 𝑤 ) |
| 118 |
116 117
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑤 ) ∧ ( 𝑊 ‘ 𝑗 ) = 𝑤 ) → 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) ) |
| 119 |
118
|
ex |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑤 ) → ( ( 𝑊 ‘ 𝑗 ) = 𝑤 → 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) ) ) |
| 120 |
119
|
reximdv |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑤 ) → ( ∃ 𝑗 ∈ ( 1 ... 𝑀 ) ( 𝑊 ‘ 𝑗 ) = 𝑤 → ∃ 𝑗 ∈ ( 1 ... 𝑀 ) 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) ) ) |
| 121 |
120
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ ran 𝑊 ) ) → ( ∃ 𝑗 ∈ ( 1 ... 𝑀 ) ( 𝑊 ‘ 𝑗 ) = 𝑤 → ∃ 𝑗 ∈ ( 1 ... 𝑀 ) 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) ) ) |
| 122 |
115 121
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ ran 𝑊 ) ) → ∃ 𝑗 ∈ ( 1 ... 𝑀 ) 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) ) |
| 123 |
122
|
ex |
⊢ ( 𝜑 → ( ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ ran 𝑊 ) → ∃ 𝑗 ∈ ( 1 ... 𝑀 ) 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) ) ) |
| 124 |
123
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑤 ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ ran 𝑊 ) → ∃ 𝑗 ∈ ( 1 ... 𝑀 ) 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) ) ) |
| 125 |
124
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( ∃ 𝑤 ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ ran 𝑊 ) → ∃ 𝑗 ∈ ( 1 ... 𝑀 ) 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) ) ) |
| 126 |
110 125
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ∃ 𝑗 ∈ ( 1 ... 𝑀 ) 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) ) |
| 127 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) ) → 𝜑 ) |
| 128 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) ) → 𝑗 ∈ ( 1 ... 𝑀 ) ) |
| 129 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) ) → 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) ) |
| 130 |
|
nfv |
⊢ Ⅎ 𝑖 𝑗 ∈ ( 1 ... 𝑀 ) |
| 131 |
|
nfv |
⊢ Ⅎ 𝑖 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) |
| 132 |
1 130 131
|
nf3an |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) ) |
| 133 |
|
nfv |
⊢ Ⅎ 𝑖 ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) < 𝐸 |
| 134 |
132 133
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) ) → ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) < 𝐸 ) |
| 135 |
|
eleq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 ∈ ( 1 ... 𝑀 ) ↔ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) |
| 136 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 𝑗 ) ) |
| 137 |
136
|
eleq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ↔ 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) ) ) |
| 138 |
135 137
|
3anbi23d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ) ↔ ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) ) ) ) |
| 139 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑈 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑗 ) ) |
| 140 |
139
|
fveq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) ) |
| 141 |
140
|
breq1d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) < 𝐸 ↔ ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) < 𝐸 ) ) |
| 142 |
138 141
|
imbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) < 𝐸 ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) ) → ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) < 𝐸 ) ) ) |
| 143 |
13
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) < 𝐸 ) |
| 144 |
143
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) < 𝐸 ) |
| 145 |
134 142 144
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) ) → ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) < 𝐸 ) |
| 146 |
127 128 129 145
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) ) → ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) < 𝐸 ) |
| 147 |
146
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) → ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) < 𝐸 ) ) |
| 148 |
147
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( ∃ 𝑗 ∈ ( 1 ... 𝑀 ) 𝑡 ∈ ( 𝑊 ‘ 𝑗 ) → ∃ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) < 𝐸 ) ) |
| 149 |
126 148
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ∃ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) < 𝐸 ) |
| 150 |
86 130
|
nfan |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) |
| 151 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑗 |
| 152 |
84 151
|
nffv |
⊢ Ⅎ 𝑖 ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 ) |
| 153 |
152
|
nfeq1 |
⊢ Ⅎ 𝑖 ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 ) = ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) |
| 154 |
150 153
|
nfim |
⊢ Ⅎ 𝑖 ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 ) = ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) ) |
| 155 |
135
|
anbi2d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ↔ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) ) |
| 156 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) = ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 ) ) |
| 157 |
156 140
|
eqeq12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ↔ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 ) = ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) ) ) |
| 158 |
155 157
|
imbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ↔ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 ) = ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) |
| 159 |
154 158 102
|
chvarfv |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 ) = ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) ) |
| 160 |
159
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 ) < 𝐸 ↔ ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) < 𝐸 ) ) |
| 161 |
160
|
biimprd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) < 𝐸 → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 ) < 𝐸 ) ) |
| 162 |
161
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( ∃ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) < 𝐸 → ∃ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 ) < 𝐸 ) ) |
| 163 |
149 162
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ∃ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 ) < 𝐸 ) |
| 164 |
84 86 87 88 89 72 103 106 107 163
|
fmul01lt1 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) < 𝐸 ) |
| 165 |
78 164
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( 𝑍 ‘ 𝑡 ) < 𝐸 ) |
| 166 |
36 165
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑡 ) < 𝐸 ) |
| 167 |
166
|
ex |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐷 → ( 𝑋 ‘ 𝑡 ) < 𝐸 ) ) |
| 168 |
2 167
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝐷 ( 𝑋 ‘ 𝑡 ) < 𝐸 ) |