| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem49.1 |
⊢ Ⅎ 𝑡 𝑃 |
| 2 |
|
stoweidlem49.2 |
⊢ Ⅎ 𝑡 𝜑 |
| 3 |
|
stoweidlem49.3 |
⊢ 𝑉 = { 𝑡 ∈ 𝑇 ∣ ( 𝑃 ‘ 𝑡 ) < ( 𝐷 / 2 ) } |
| 4 |
|
stoweidlem49.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ+ ) |
| 5 |
|
stoweidlem49.5 |
⊢ ( 𝜑 → 𝐷 < 1 ) |
| 6 |
|
stoweidlem49.6 |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
| 7 |
|
stoweidlem49.7 |
⊢ ( 𝜑 → 𝑃 : 𝑇 ⟶ ℝ ) |
| 8 |
|
stoweidlem49.8 |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑃 ‘ 𝑡 ) ∧ ( 𝑃 ‘ 𝑡 ) ≤ 1 ) ) |
| 9 |
|
stoweidlem49.9 |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝐷 ≤ ( 𝑃 ‘ 𝑡 ) ) |
| 10 |
|
stoweidlem49.10 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
| 11 |
|
stoweidlem49.11 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 12 |
|
stoweidlem49.12 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 13 |
|
stoweidlem49.13 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
| 14 |
|
stoweidlem49.14 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 15 |
|
breq2 |
⊢ ( 𝑗 = 𝑖 → ( ( 1 / 𝐷 ) < 𝑗 ↔ ( 1 / 𝐷 ) < 𝑖 ) ) |
| 16 |
15
|
cbvrabv |
⊢ { 𝑗 ∈ ℕ ∣ ( 1 / 𝐷 ) < 𝑗 } = { 𝑖 ∈ ℕ ∣ ( 1 / 𝐷 ) < 𝑖 } |
| 17 |
16 4 5
|
stoweidlem14 |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ℕ ( 1 < ( 𝑘 · 𝐷 ) ∧ ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) ) |
| 18 |
|
eqid |
⊢ ( 𝑖 ∈ ℕ0 ↦ ( ( 1 / ( 𝑘 · 𝐷 ) ) ↑ 𝑖 ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( 1 / ( 𝑘 · 𝐷 ) ) ↑ 𝑖 ) ) |
| 19 |
|
eqid |
⊢ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑖 ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑖 ) ) |
| 20 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ ) |
| 22 |
4
|
rpred |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐷 ∈ ℝ ) |
| 24 |
21 23
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · 𝐷 ) ∈ ℝ ) |
| 25 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 1 < ( 𝑘 · 𝐷 ) ∧ ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) ) → ( 𝑘 · 𝐷 ) ∈ ℝ ) |
| 26 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 1 < ( 𝑘 · 𝐷 ) ∧ ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) ) → 1 < ( 𝑘 · 𝐷 ) ) |
| 27 |
24
|
rehalfcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · 𝐷 ) / 2 ) ∈ ℝ ) |
| 28 |
|
nngt0 |
⊢ ( 𝑘 ∈ ℕ → 0 < 𝑘 ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 < 𝑘 ) |
| 30 |
4
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝐷 ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 < 𝐷 ) |
| 32 |
21 23 29 31
|
mulgt0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 < ( 𝑘 · 𝐷 ) ) |
| 33 |
|
2re |
⊢ 2 ∈ ℝ |
| 34 |
|
2pos |
⊢ 0 < 2 |
| 35 |
33 34
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 36 |
35
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
| 37 |
|
divgt0 |
⊢ ( ( ( ( 𝑘 · 𝐷 ) ∈ ℝ ∧ 0 < ( 𝑘 · 𝐷 ) ) ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → 0 < ( ( 𝑘 · 𝐷 ) / 2 ) ) |
| 38 |
24 32 36 37
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 < ( ( 𝑘 · 𝐷 ) / 2 ) ) |
| 39 |
27 38
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · 𝐷 ) / 2 ) ∈ ℝ+ ) |
| 40 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 1 < ( 𝑘 · 𝐷 ) ∧ ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) ) → ( ( 𝑘 · 𝐷 ) / 2 ) ∈ ℝ+ ) |
| 41 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 1 < ( 𝑘 · 𝐷 ) ∧ ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) ) → ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) |
| 42 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 1 < ( 𝑘 · 𝐷 ) ∧ ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) ) → 𝐸 ∈ ℝ+ ) |
| 43 |
18 19 25 26 40 41 42
|
stoweidlem7 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 1 < ( 𝑘 · 𝐷 ) ∧ ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) ) → ∃ 𝑛 ∈ ℕ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) |
| 44 |
43
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 1 < ( 𝑘 · 𝐷 ) ∧ ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) → ∃ 𝑛 ∈ ℕ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) ) |
| 45 |
44
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℕ ( 1 < ( 𝑘 · 𝐷 ) ∧ ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) → ∃ 𝑘 ∈ ℕ ∃ 𝑛 ∈ ℕ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) ) |
| 46 |
17 45
|
mpd |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ℕ ∃ 𝑛 ∈ ℕ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) |
| 47 |
|
nfv |
⊢ Ⅎ 𝑡 ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) |
| 48 |
2 47
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) |
| 49 |
|
nfv |
⊢ Ⅎ 𝑡 ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) |
| 50 |
48 49
|
nfan |
⊢ Ⅎ 𝑡 ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) |
| 51 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑛 ) ) ↑ ( 𝑘 ↑ 𝑛 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑛 ) ) ↑ ( 𝑘 ↑ 𝑛 ) ) ) |
| 52 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) → 𝑛 ∈ ℕ ) |
| 53 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) → 𝑘 ∈ ℕ ) |
| 54 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) → 𝐷 ∈ ℝ+ ) |
| 55 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) → 𝐷 < 1 ) |
| 56 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) → 𝑃 ∈ 𝐴 ) |
| 57 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) → 𝑃 : 𝑇 ⟶ ℝ ) |
| 58 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑃 ‘ 𝑡 ) ∧ ( 𝑃 ‘ 𝑡 ) ≤ 1 ) ) |
| 59 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝐷 ≤ ( 𝑃 ‘ 𝑡 ) ) |
| 60 |
10
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
| 61 |
|
simp1ll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → 𝜑 ) |
| 62 |
61 11
|
syld3an1 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 63 |
61 12
|
syld3an1 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 64 |
13
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
| 65 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) → 𝐸 ∈ ℝ+ ) |
| 66 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) → ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ) |
| 67 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) → ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) |
| 68 |
1 50 3 51 52 53 54 55 56 57 58 59 60 62 63 64 65 66 67
|
stoweidlem45 |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) ) → ∃ 𝑦 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑦 ‘ 𝑡 ) ∧ ( 𝑦 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑉 ( 1 − 𝐸 ) < ( 𝑦 ‘ 𝑡 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 𝑦 ‘ 𝑡 ) < 𝐸 ) ) |
| 69 |
68
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) → ∃ 𝑦 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑦 ‘ 𝑡 ) ∧ ( 𝑦 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑉 ( 1 − 𝐸 ) < ( 𝑦 ‘ 𝑡 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 𝑦 ‘ 𝑡 ) < 𝐸 ) ) ) |
| 70 |
69
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℕ ∃ 𝑛 ∈ ℕ ( ( 1 − 𝐸 ) < ( 1 − ( ( ( 𝑘 · 𝐷 ) / 2 ) ↑ 𝑛 ) ) ∧ ( 1 / ( ( 𝑘 · 𝐷 ) ↑ 𝑛 ) ) < 𝐸 ) → ∃ 𝑦 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑦 ‘ 𝑡 ) ∧ ( 𝑦 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑉 ( 1 − 𝐸 ) < ( 𝑦 ‘ 𝑡 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 𝑦 ‘ 𝑡 ) < 𝐸 ) ) ) |
| 71 |
46 70
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑦 ‘ 𝑡 ) ∧ ( 𝑦 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑉 ( 1 − 𝐸 ) < ( 𝑦 ‘ 𝑡 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 𝑦 ‘ 𝑡 ) < 𝐸 ) ) |