Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem5.1 |
⊢ Ⅎ 𝑡 𝜑 |
2 |
|
stoweidlem5.2 |
⊢ 𝐷 = if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) ) |
3 |
|
stoweidlem5.3 |
⊢ ( 𝜑 → 𝑃 : 𝑇 ⟶ ℝ ) |
4 |
|
stoweidlem5.4 |
⊢ ( 𝜑 → 𝑄 ⊆ 𝑇 ) |
5 |
|
stoweidlem5.5 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
6 |
|
stoweidlem5.6 |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑄 𝐶 ≤ ( 𝑃 ‘ 𝑡 ) ) |
7 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
8 |
|
halfgt0 |
⊢ 0 < ( 1 / 2 ) |
9 |
7 8
|
elrpii |
⊢ ( 1 / 2 ) ∈ ℝ+ |
10 |
|
ifcl |
⊢ ( ( 𝐶 ∈ ℝ+ ∧ ( 1 / 2 ) ∈ ℝ+ ) → if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) ) ∈ ℝ+ ) |
11 |
5 9 10
|
sylancl |
⊢ ( 𝜑 → if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) ) ∈ ℝ+ ) |
12 |
2 11
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ ℝ+ ) |
13 |
12
|
rpred |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
14 |
7
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℝ ) |
15 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
16 |
5
|
rpred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
17 |
|
min2 |
⊢ ( ( 𝐶 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) ) ≤ ( 1 / 2 ) ) |
18 |
16 7 17
|
sylancl |
⊢ ( 𝜑 → if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) ) ≤ ( 1 / 2 ) ) |
19 |
2 18
|
eqbrtrid |
⊢ ( 𝜑 → 𝐷 ≤ ( 1 / 2 ) ) |
20 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
21 |
20
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) < 1 ) |
22 |
13 14 15 19 21
|
lelttrd |
⊢ ( 𝜑 → 𝐷 < 1 ) |
23 |
11
|
rpred |
⊢ ( 𝜑 → if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) ) ∈ ℝ ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑄 ) → if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) ) ∈ ℝ ) |
25 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑄 ) → 𝐶 ∈ ℝ ) |
26 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑄 ) → 𝑃 : 𝑇 ⟶ ℝ ) |
27 |
4
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑄 ) → 𝑡 ∈ 𝑇 ) |
28 |
26 27
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑄 ) → ( 𝑃 ‘ 𝑡 ) ∈ ℝ ) |
29 |
|
min1 |
⊢ ( ( 𝐶 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) ) ≤ 𝐶 ) |
30 |
16 7 29
|
sylancl |
⊢ ( 𝜑 → if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) ) ≤ 𝐶 ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑄 ) → if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) ) ≤ 𝐶 ) |
32 |
6
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑄 ) → 𝐶 ≤ ( 𝑃 ‘ 𝑡 ) ) |
33 |
24 25 28 31 32
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑄 ) → if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) ) ≤ ( 𝑃 ‘ 𝑡 ) ) |
34 |
2 33
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑄 ) → 𝐷 ≤ ( 𝑃 ‘ 𝑡 ) ) |
35 |
34
|
ex |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑄 → 𝐷 ≤ ( 𝑃 ‘ 𝑡 ) ) ) |
36 |
1 35
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑄 𝐷 ≤ ( 𝑃 ‘ 𝑡 ) ) |
37 |
|
eleq1 |
⊢ ( 𝑑 = 𝐷 → ( 𝑑 ∈ ℝ+ ↔ 𝐷 ∈ ℝ+ ) ) |
38 |
|
breq1 |
⊢ ( 𝑑 = 𝐷 → ( 𝑑 < 1 ↔ 𝐷 < 1 ) ) |
39 |
|
breq1 |
⊢ ( 𝑑 = 𝐷 → ( 𝑑 ≤ ( 𝑃 ‘ 𝑡 ) ↔ 𝐷 ≤ ( 𝑃 ‘ 𝑡 ) ) ) |
40 |
39
|
ralbidv |
⊢ ( 𝑑 = 𝐷 → ( ∀ 𝑡 ∈ 𝑄 𝑑 ≤ ( 𝑃 ‘ 𝑡 ) ↔ ∀ 𝑡 ∈ 𝑄 𝐷 ≤ ( 𝑃 ‘ 𝑡 ) ) ) |
41 |
37 38 40
|
3anbi123d |
⊢ ( 𝑑 = 𝐷 → ( ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ 𝑄 𝑑 ≤ ( 𝑃 ‘ 𝑡 ) ) ↔ ( 𝐷 ∈ ℝ+ ∧ 𝐷 < 1 ∧ ∀ 𝑡 ∈ 𝑄 𝐷 ≤ ( 𝑃 ‘ 𝑡 ) ) ) ) |
42 |
41
|
spcegv |
⊢ ( 𝐷 ∈ ℝ+ → ( ( 𝐷 ∈ ℝ+ ∧ 𝐷 < 1 ∧ ∀ 𝑡 ∈ 𝑄 𝐷 ≤ ( 𝑃 ‘ 𝑡 ) ) → ∃ 𝑑 ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ 𝑄 𝑑 ≤ ( 𝑃 ‘ 𝑡 ) ) ) ) |
43 |
12 42
|
syl |
⊢ ( 𝜑 → ( ( 𝐷 ∈ ℝ+ ∧ 𝐷 < 1 ∧ ∀ 𝑡 ∈ 𝑄 𝐷 ≤ ( 𝑃 ‘ 𝑡 ) ) → ∃ 𝑑 ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ 𝑄 𝑑 ≤ ( 𝑃 ‘ 𝑡 ) ) ) ) |
44 |
12 22 36 43
|
mp3and |
⊢ ( 𝜑 → ∃ 𝑑 ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ 𝑄 𝑑 ≤ ( 𝑃 ‘ 𝑡 ) ) ) |