Metamath Proof Explorer


Theorem stoweidlem5

Description: There exists a δ as in the proof of Lemma 1 in BrosowskiDeutsh p. 90: 0 < δ < 1 , p >= δ on T \ U . Here D is used to represent δ in the paper and Q to represent T \ U in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem5.1 𝑡 𝜑
stoweidlem5.2 𝐷 = if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) )
stoweidlem5.3 ( 𝜑𝑃 : 𝑇 ⟶ ℝ )
stoweidlem5.4 ( 𝜑𝑄𝑇 )
stoweidlem5.5 ( 𝜑𝐶 ∈ ℝ+ )
stoweidlem5.6 ( 𝜑 → ∀ 𝑡𝑄 𝐶 ≤ ( 𝑃𝑡 ) )
Assertion stoweidlem5 ( 𝜑 → ∃ 𝑑 ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀ 𝑡𝑄 𝑑 ≤ ( 𝑃𝑡 ) ) )

Proof

Step Hyp Ref Expression
1 stoweidlem5.1 𝑡 𝜑
2 stoweidlem5.2 𝐷 = if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) )
3 stoweidlem5.3 ( 𝜑𝑃 : 𝑇 ⟶ ℝ )
4 stoweidlem5.4 ( 𝜑𝑄𝑇 )
5 stoweidlem5.5 ( 𝜑𝐶 ∈ ℝ+ )
6 stoweidlem5.6 ( 𝜑 → ∀ 𝑡𝑄 𝐶 ≤ ( 𝑃𝑡 ) )
7 halfre ( 1 / 2 ) ∈ ℝ
8 halfgt0 0 < ( 1 / 2 )
9 7 8 elrpii ( 1 / 2 ) ∈ ℝ+
10 ifcl ( ( 𝐶 ∈ ℝ+ ∧ ( 1 / 2 ) ∈ ℝ+ ) → if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) ) ∈ ℝ+ )
11 5 9 10 sylancl ( 𝜑 → if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) ) ∈ ℝ+ )
12 2 11 eqeltrid ( 𝜑𝐷 ∈ ℝ+ )
13 12 rpred ( 𝜑𝐷 ∈ ℝ )
14 7 a1i ( 𝜑 → ( 1 / 2 ) ∈ ℝ )
15 1red ( 𝜑 → 1 ∈ ℝ )
16 5 rpred ( 𝜑𝐶 ∈ ℝ )
17 min2 ( ( 𝐶 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) ) ≤ ( 1 / 2 ) )
18 16 7 17 sylancl ( 𝜑 → if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) ) ≤ ( 1 / 2 ) )
19 2 18 eqbrtrid ( 𝜑𝐷 ≤ ( 1 / 2 ) )
20 halflt1 ( 1 / 2 ) < 1
21 20 a1i ( 𝜑 → ( 1 / 2 ) < 1 )
22 13 14 15 19 21 lelttrd ( 𝜑𝐷 < 1 )
23 11 rpred ( 𝜑 → if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) ) ∈ ℝ )
24 23 adantr ( ( 𝜑𝑡𝑄 ) → if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) ) ∈ ℝ )
25 16 adantr ( ( 𝜑𝑡𝑄 ) → 𝐶 ∈ ℝ )
26 3 adantr ( ( 𝜑𝑡𝑄 ) → 𝑃 : 𝑇 ⟶ ℝ )
27 4 sselda ( ( 𝜑𝑡𝑄 ) → 𝑡𝑇 )
28 26 27 ffvelrnd ( ( 𝜑𝑡𝑄 ) → ( 𝑃𝑡 ) ∈ ℝ )
29 min1 ( ( 𝐶 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) ) ≤ 𝐶 )
30 16 7 29 sylancl ( 𝜑 → if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) ) ≤ 𝐶 )
31 30 adantr ( ( 𝜑𝑡𝑄 ) → if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) ) ≤ 𝐶 )
32 6 r19.21bi ( ( 𝜑𝑡𝑄 ) → 𝐶 ≤ ( 𝑃𝑡 ) )
33 24 25 28 31 32 letrd ( ( 𝜑𝑡𝑄 ) → if ( 𝐶 ≤ ( 1 / 2 ) , 𝐶 , ( 1 / 2 ) ) ≤ ( 𝑃𝑡 ) )
34 2 33 eqbrtrid ( ( 𝜑𝑡𝑄 ) → 𝐷 ≤ ( 𝑃𝑡 ) )
35 34 ex ( 𝜑 → ( 𝑡𝑄𝐷 ≤ ( 𝑃𝑡 ) ) )
36 1 35 ralrimi ( 𝜑 → ∀ 𝑡𝑄 𝐷 ≤ ( 𝑃𝑡 ) )
37 eleq1 ( 𝑑 = 𝐷 → ( 𝑑 ∈ ℝ+𝐷 ∈ ℝ+ ) )
38 breq1 ( 𝑑 = 𝐷 → ( 𝑑 < 1 ↔ 𝐷 < 1 ) )
39 breq1 ( 𝑑 = 𝐷 → ( 𝑑 ≤ ( 𝑃𝑡 ) ↔ 𝐷 ≤ ( 𝑃𝑡 ) ) )
40 39 ralbidv ( 𝑑 = 𝐷 → ( ∀ 𝑡𝑄 𝑑 ≤ ( 𝑃𝑡 ) ↔ ∀ 𝑡𝑄 𝐷 ≤ ( 𝑃𝑡 ) ) )
41 37 38 40 3anbi123d ( 𝑑 = 𝐷 → ( ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀ 𝑡𝑄 𝑑 ≤ ( 𝑃𝑡 ) ) ↔ ( 𝐷 ∈ ℝ+𝐷 < 1 ∧ ∀ 𝑡𝑄 𝐷 ≤ ( 𝑃𝑡 ) ) ) )
42 41 spcegv ( 𝐷 ∈ ℝ+ → ( ( 𝐷 ∈ ℝ+𝐷 < 1 ∧ ∀ 𝑡𝑄 𝐷 ≤ ( 𝑃𝑡 ) ) → ∃ 𝑑 ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀ 𝑡𝑄 𝑑 ≤ ( 𝑃𝑡 ) ) ) )
43 12 42 syl ( 𝜑 → ( ( 𝐷 ∈ ℝ+𝐷 < 1 ∧ ∀ 𝑡𝑄 𝐷 ≤ ( 𝑃𝑡 ) ) → ∃ 𝑑 ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀ 𝑡𝑄 𝑑 ≤ ( 𝑃𝑡 ) ) ) )
44 12 22 36 43 mp3and ( 𝜑 → ∃ 𝑑 ( 𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀ 𝑡𝑄 𝑑 ≤ ( 𝑃𝑡 ) ) )