Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem50.1 |
⊢ Ⅎ 𝑡 𝑈 |
2 |
|
stoweidlem50.2 |
⊢ Ⅎ 𝑡 𝜑 |
3 |
|
stoweidlem50.3 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
4 |
|
stoweidlem50.4 |
⊢ 𝑄 = { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } |
5 |
|
stoweidlem50.5 |
⊢ 𝑊 = { 𝑤 ∈ 𝐽 ∣ ∃ ℎ ∈ 𝑄 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } |
6 |
|
stoweidlem50.6 |
⊢ 𝑇 = ∪ 𝐽 |
7 |
|
stoweidlem50.7 |
⊢ 𝐶 = ( 𝐽 Cn 𝐾 ) |
8 |
|
stoweidlem50.8 |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
9 |
|
stoweidlem50.9 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
10 |
|
stoweidlem50.10 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
11 |
|
stoweidlem50.11 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
12 |
|
stoweidlem50.12 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
13 |
|
stoweidlem50.13 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ‘ 𝑟 ) ≠ ( 𝑞 ‘ 𝑡 ) ) |
14 |
|
stoweidlem50.14 |
⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) |
15 |
|
stoweidlem50.15 |
⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) |
16 |
|
nfrab1 |
⊢ Ⅎ ℎ { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } |
17 |
4 16
|
nfcxfr |
⊢ Ⅎ ℎ 𝑄 |
18 |
|
nfv |
⊢ Ⅎ 𝑞 𝜑 |
19 |
9 7
|
sseqtrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝐽 Cn 𝐾 ) ) |
20 |
8
|
uniexd |
⊢ ( 𝜑 → ∪ 𝐽 ∈ V ) |
21 |
6 20
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
22 |
1 17 18 2 3 4 5 6 8 19 10 11 12 13 14 15 21
|
stoweidlem46 |
⊢ ( 𝜑 → ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑊 ) |
23 |
|
dfin4 |
⊢ ( 𝑇 ∩ 𝑈 ) = ( 𝑇 ∖ ( 𝑇 ∖ 𝑈 ) ) |
24 |
|
elssuni |
⊢ ( 𝑈 ∈ 𝐽 → 𝑈 ⊆ ∪ 𝐽 ) |
25 |
14 24
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ ∪ 𝐽 ) |
26 |
25 6
|
sseqtrrdi |
⊢ ( 𝜑 → 𝑈 ⊆ 𝑇 ) |
27 |
|
sseqin2 |
⊢ ( 𝑈 ⊆ 𝑇 ↔ ( 𝑇 ∩ 𝑈 ) = 𝑈 ) |
28 |
26 27
|
sylib |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = 𝑈 ) |
29 |
23 28
|
eqtr3id |
⊢ ( 𝜑 → ( 𝑇 ∖ ( 𝑇 ∖ 𝑈 ) ) = 𝑈 ) |
30 |
29 14
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑇 ∖ ( 𝑇 ∖ 𝑈 ) ) ∈ 𝐽 ) |
31 |
|
cmptop |
⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) |
32 |
8 31
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
33 |
|
difssd |
⊢ ( 𝜑 → ( 𝑇 ∖ 𝑈 ) ⊆ 𝑇 ) |
34 |
6
|
iscld2 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑇 ∖ 𝑈 ) ⊆ 𝑇 ) → ( ( 𝑇 ∖ 𝑈 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑇 ∖ ( 𝑇 ∖ 𝑈 ) ) ∈ 𝐽 ) ) |
35 |
32 33 34
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑇 ∖ 𝑈 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑇 ∖ ( 𝑇 ∖ 𝑈 ) ) ∈ 𝐽 ) ) |
36 |
30 35
|
mpbird |
⊢ ( 𝜑 → ( 𝑇 ∖ 𝑈 ) ∈ ( Clsd ‘ 𝐽 ) ) |
37 |
|
cmpcld |
⊢ ( ( 𝐽 ∈ Comp ∧ ( 𝑇 ∖ 𝑈 ) ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ∈ Comp ) |
38 |
8 36 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ∈ Comp ) |
39 |
6
|
cmpsub |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑇 ∖ 𝑈 ) ⊆ 𝑇 ) → ( ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ∈ Comp ↔ ∀ 𝑐 ∈ 𝒫 𝐽 ( ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑐 → ∃ 𝑢 ∈ ( 𝒫 𝑐 ∩ Fin ) ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) ) |
40 |
32 33 39
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ∈ Comp ↔ ∀ 𝑐 ∈ 𝒫 𝐽 ( ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑐 → ∃ 𝑢 ∈ ( 𝒫 𝑐 ∩ Fin ) ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) ) |
41 |
38 40
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝒫 𝐽 ( ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑐 → ∃ 𝑢 ∈ ( 𝒫 𝑐 ∩ Fin ) ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) |
42 |
|
ssrab2 |
⊢ { 𝑤 ∈ 𝐽 ∣ ∃ ℎ ∈ 𝑄 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ⊆ 𝐽 |
43 |
5 42
|
eqsstri |
⊢ 𝑊 ⊆ 𝐽 |
44 |
5 8
|
rabexd |
⊢ ( 𝜑 → 𝑊 ∈ V ) |
45 |
|
elpwg |
⊢ ( 𝑊 ∈ V → ( 𝑊 ∈ 𝒫 𝐽 ↔ 𝑊 ⊆ 𝐽 ) ) |
46 |
44 45
|
syl |
⊢ ( 𝜑 → ( 𝑊 ∈ 𝒫 𝐽 ↔ 𝑊 ⊆ 𝐽 ) ) |
47 |
43 46
|
mpbiri |
⊢ ( 𝜑 → 𝑊 ∈ 𝒫 𝐽 ) |
48 |
|
unieq |
⊢ ( 𝑐 = 𝑊 → ∪ 𝑐 = ∪ 𝑊 ) |
49 |
48
|
sseq2d |
⊢ ( 𝑐 = 𝑊 → ( ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑐 ↔ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑊 ) ) |
50 |
|
pweq |
⊢ ( 𝑐 = 𝑊 → 𝒫 𝑐 = 𝒫 𝑊 ) |
51 |
50
|
ineq1d |
⊢ ( 𝑐 = 𝑊 → ( 𝒫 𝑐 ∩ Fin ) = ( 𝒫 𝑊 ∩ Fin ) ) |
52 |
51
|
rexeqdv |
⊢ ( 𝑐 = 𝑊 → ( ∃ 𝑢 ∈ ( 𝒫 𝑐 ∩ Fin ) ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ↔ ∃ 𝑢 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) |
53 |
49 52
|
imbi12d |
⊢ ( 𝑐 = 𝑊 → ( ( ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑐 → ∃ 𝑢 ∈ ( 𝒫 𝑐 ∩ Fin ) ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ↔ ( ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑊 → ∃ 𝑢 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) ) |
54 |
53
|
rspccva |
⊢ ( ( ∀ 𝑐 ∈ 𝒫 𝐽 ( ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑐 → ∃ 𝑢 ∈ ( 𝒫 𝑐 ∩ Fin ) ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ∧ 𝑊 ∈ 𝒫 𝐽 ) → ( ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑊 → ∃ 𝑢 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) |
55 |
41 47 54
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑊 → ∃ 𝑢 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) |
56 |
55
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑊 ) → ∃ 𝑢 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) |
57 |
|
df-rex |
⊢ ( ∃ 𝑢 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ↔ ∃ 𝑢 ( 𝑢 ∈ ( 𝒫 𝑊 ∩ Fin ) ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) |
58 |
56 57
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑊 ) → ∃ 𝑢 ( 𝑢 ∈ ( 𝒫 𝑊 ∩ Fin ) ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) |
59 |
|
elinel2 |
⊢ ( 𝑢 ∈ ( 𝒫 𝑊 ∩ Fin ) → 𝑢 ∈ Fin ) |
60 |
59
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑊 ) ∧ ( 𝑢 ∈ ( 𝒫 𝑊 ∩ Fin ) ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) → 𝑢 ∈ Fin ) |
61 |
|
elinel1 |
⊢ ( 𝑢 ∈ ( 𝒫 𝑊 ∩ Fin ) → 𝑢 ∈ 𝒫 𝑊 ) |
62 |
61
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑊 ) ∧ ( 𝑢 ∈ ( 𝒫 𝑊 ∩ Fin ) ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) → 𝑢 ∈ 𝒫 𝑊 ) |
63 |
62
|
elpwid |
⊢ ( ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑊 ) ∧ ( 𝑢 ∈ ( 𝒫 𝑊 ∩ Fin ) ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) → 𝑢 ⊆ 𝑊 ) |
64 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑊 ) ∧ ( 𝑢 ∈ ( 𝒫 𝑊 ∩ Fin ) ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) → ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) |
65 |
60 63 64
|
3jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑊 ) ∧ ( 𝑢 ∈ ( 𝒫 𝑊 ∩ Fin ) ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) → ( 𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) |
66 |
65
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑊 ) → ( ( 𝑢 ∈ ( 𝒫 𝑊 ∩ Fin ) ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) → ( 𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) ) |
67 |
66
|
eximdv |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑊 ) → ( ∃ 𝑢 ( 𝑢 ∈ ( 𝒫 𝑊 ∩ Fin ) ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) → ∃ 𝑢 ( 𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) ) |
68 |
58 67
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑊 ) → ∃ 𝑢 ( 𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) |
69 |
22 68
|
mpdan |
⊢ ( 𝜑 → ∃ 𝑢 ( 𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) |