Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem51.1 |
⊢ Ⅎ 𝑖 𝜑 |
2 |
|
stoweidlem51.2 |
⊢ Ⅎ 𝑡 𝜑 |
3 |
|
stoweidlem51.3 |
⊢ Ⅎ 𝑤 𝜑 |
4 |
|
stoweidlem51.4 |
⊢ Ⅎ 𝑤 𝑉 |
5 |
|
stoweidlem51.5 |
⊢ 𝑌 = { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } |
6 |
|
stoweidlem51.6 |
⊢ 𝑃 = ( 𝑓 ∈ 𝑌 , 𝑔 ∈ 𝑌 ↦ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ) |
7 |
|
stoweidlem51.7 |
⊢ 𝑋 = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) |
8 |
|
stoweidlem51.8 |
⊢ 𝐹 = ( 𝑡 ∈ 𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
9 |
|
stoweidlem51.9 |
⊢ 𝑍 = ( 𝑡 ∈ 𝑇 ↦ ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) |
10 |
|
stoweidlem51.10 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
11 |
|
stoweidlem51.11 |
⊢ ( 𝜑 → 𝑊 : ( 1 ... 𝑀 ) ⟶ 𝑉 ) |
12 |
|
stoweidlem51.12 |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑀 ) ⟶ 𝑌 ) |
13 |
|
stoweidlem51.13 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ) → 𝑤 ⊆ 𝑇 ) |
14 |
|
stoweidlem51.14 |
⊢ ( 𝜑 → 𝐷 ⊆ ∪ ran 𝑊 ) |
15 |
|
stoweidlem51.15 |
⊢ ( 𝜑 → 𝐷 ⊆ 𝑇 ) |
16 |
|
stoweidlem51.16 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑇 ) |
17 |
|
stoweidlem51.17 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) |
18 |
|
stoweidlem51.18 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) |
19 |
|
stoweidlem51.19 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
20 |
|
stoweidlem51.20 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
21 |
|
stoweidlem51.21 |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
22 |
|
stoweidlem51.22 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
23 |
|
stoweidlem51.23 |
⊢ ( 𝜑 → 𝐸 < ( 1 / 3 ) ) |
24 |
|
ssrab2 |
⊢ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } ⊆ 𝐴 |
25 |
5 24
|
eqsstri |
⊢ 𝑌 ⊆ 𝐴 |
26 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
27 |
10
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
28 |
10
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑀 ) |
29 |
10
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
30 |
29
|
leidd |
⊢ ( 𝜑 → 𝑀 ≤ 𝑀 ) |
31 |
26 27 27 28 30
|
elfzd |
⊢ ( 𝜑 → 𝑀 ∈ ( 1 ... 𝑀 ) ) |
32 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) |
33 |
2 5 32 20 19
|
stoweidlem16 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝑌 ) |
34 |
6 7 31 12 33 21
|
fmulcl |
⊢ ( 𝜑 → 𝑋 ∈ 𝑌 ) |
35 |
25 34
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
36 |
5
|
eleq2i |
⊢ ( 𝑋 ∈ 𝑌 ↔ 𝑋 ∈ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } ) |
37 |
|
nfcv |
⊢ Ⅎ ℎ 1 |
38 |
|
nfrab1 |
⊢ Ⅎ ℎ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } |
39 |
5 38
|
nfcxfr |
⊢ Ⅎ ℎ 𝑌 |
40 |
|
nfcv |
⊢ Ⅎ ℎ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) |
41 |
39 39 40
|
nfmpo |
⊢ Ⅎ ℎ ( 𝑓 ∈ 𝑌 , 𝑔 ∈ 𝑌 ↦ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ) |
42 |
6 41
|
nfcxfr |
⊢ Ⅎ ℎ 𝑃 |
43 |
|
nfcv |
⊢ Ⅎ ℎ 𝑈 |
44 |
37 42 43
|
nfseq |
⊢ Ⅎ ℎ seq 1 ( 𝑃 , 𝑈 ) |
45 |
|
nfcv |
⊢ Ⅎ ℎ 𝑀 |
46 |
44 45
|
nffv |
⊢ Ⅎ ℎ ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) |
47 |
7 46
|
nfcxfr |
⊢ Ⅎ ℎ 𝑋 |
48 |
|
nfcv |
⊢ Ⅎ ℎ 𝐴 |
49 |
|
nfcv |
⊢ Ⅎ ℎ 𝑇 |
50 |
|
nfcv |
⊢ Ⅎ ℎ 0 |
51 |
|
nfcv |
⊢ Ⅎ ℎ ≤ |
52 |
|
nfcv |
⊢ Ⅎ ℎ 𝑡 |
53 |
47 52
|
nffv |
⊢ Ⅎ ℎ ( 𝑋 ‘ 𝑡 ) |
54 |
50 51 53
|
nfbr |
⊢ Ⅎ ℎ 0 ≤ ( 𝑋 ‘ 𝑡 ) |
55 |
53 51 37
|
nfbr |
⊢ Ⅎ ℎ ( 𝑋 ‘ 𝑡 ) ≤ 1 |
56 |
54 55
|
nfan |
⊢ Ⅎ ℎ ( 0 ≤ ( 𝑋 ‘ 𝑡 ) ∧ ( 𝑋 ‘ 𝑡 ) ≤ 1 ) |
57 |
49 56
|
nfralw |
⊢ Ⅎ ℎ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑋 ‘ 𝑡 ) ∧ ( 𝑋 ‘ 𝑡 ) ≤ 1 ) |
58 |
|
nfcv |
⊢ Ⅎ 𝑡 1 |
59 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) |
60 |
|
nfcv |
⊢ Ⅎ 𝑡 𝐴 |
61 |
59 60
|
nfrabw |
⊢ Ⅎ 𝑡 { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } |
62 |
5 61
|
nfcxfr |
⊢ Ⅎ 𝑡 𝑌 |
63 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) |
64 |
62 62 63
|
nfmpo |
⊢ Ⅎ 𝑡 ( 𝑓 ∈ 𝑌 , 𝑔 ∈ 𝑌 ↦ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ) |
65 |
6 64
|
nfcxfr |
⊢ Ⅎ 𝑡 𝑃 |
66 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑈 |
67 |
58 65 66
|
nfseq |
⊢ Ⅎ 𝑡 seq 1 ( 𝑃 , 𝑈 ) |
68 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑀 |
69 |
67 68
|
nffv |
⊢ Ⅎ 𝑡 ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) |
70 |
7 69
|
nfcxfr |
⊢ Ⅎ 𝑡 𝑋 |
71 |
70
|
nfeq2 |
⊢ Ⅎ 𝑡 ℎ = 𝑋 |
72 |
|
fveq1 |
⊢ ( ℎ = 𝑋 → ( ℎ ‘ 𝑡 ) = ( 𝑋 ‘ 𝑡 ) ) |
73 |
72
|
breq2d |
⊢ ( ℎ = 𝑋 → ( 0 ≤ ( ℎ ‘ 𝑡 ) ↔ 0 ≤ ( 𝑋 ‘ 𝑡 ) ) ) |
74 |
72
|
breq1d |
⊢ ( ℎ = 𝑋 → ( ( ℎ ‘ 𝑡 ) ≤ 1 ↔ ( 𝑋 ‘ 𝑡 ) ≤ 1 ) ) |
75 |
73 74
|
anbi12d |
⊢ ( ℎ = 𝑋 → ( ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( 𝑋 ‘ 𝑡 ) ∧ ( 𝑋 ‘ 𝑡 ) ≤ 1 ) ) ) |
76 |
71 75
|
ralbid |
⊢ ( ℎ = 𝑋 → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑋 ‘ 𝑡 ) ∧ ( 𝑋 ‘ 𝑡 ) ≤ 1 ) ) ) |
77 |
47 48 57 76
|
elrabf |
⊢ ( 𝑋 ∈ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } ↔ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑋 ‘ 𝑡 ) ∧ ( 𝑋 ‘ 𝑡 ) ≤ 1 ) ) ) |
78 |
36 77
|
bitri |
⊢ ( 𝑋 ∈ 𝑌 ↔ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑋 ‘ 𝑡 ) ∧ ( 𝑋 ‘ 𝑡 ) ≤ 1 ) ) ) |
79 |
34 78
|
sylib |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑋 ‘ 𝑡 ) ∧ ( 𝑋 ‘ 𝑡 ) ≤ 1 ) ) ) |
80 |
79
|
simprd |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑋 ‘ 𝑡 ) ∧ ( 𝑋 ‘ 𝑡 ) ≤ 1 ) ) |
81 |
|
nfv |
⊢ Ⅎ 𝑡 𝑖 ∈ ( 1 ... 𝑀 ) |
82 |
2 81
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) |
83 |
12
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈 ‘ 𝑖 ) ∈ 𝑌 ) |
84 |
|
fveq1 |
⊢ ( ℎ = ( 𝑈 ‘ 𝑖 ) → ( ℎ ‘ 𝑡 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) |
85 |
84
|
breq2d |
⊢ ( ℎ = ( 𝑈 ‘ 𝑖 ) → ( 0 ≤ ( ℎ ‘ 𝑡 ) ↔ 0 ≤ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
86 |
84
|
breq1d |
⊢ ( ℎ = ( 𝑈 ‘ 𝑖 ) → ( ( ℎ ‘ 𝑡 ) ≤ 1 ↔ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) |
87 |
85 86
|
anbi12d |
⊢ ( ℎ = ( 𝑈 ‘ 𝑖 ) → ( ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
88 |
87
|
ralbidv |
⊢ ( ℎ = ( 𝑈 ‘ 𝑖 ) → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
89 |
88 5
|
elrab2 |
⊢ ( ( 𝑈 ‘ 𝑖 ) ∈ 𝑌 ↔ ( ( 𝑈 ‘ 𝑖 ) ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
90 |
89
|
simplbi |
⊢ ( ( 𝑈 ‘ 𝑖 ) ∈ 𝑌 → ( 𝑈 ‘ 𝑖 ) ∈ 𝐴 ) |
91 |
83 90
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈 ‘ 𝑖 ) ∈ 𝐴 ) |
92 |
|
eleq1 |
⊢ ( 𝑓 = ( 𝑈 ‘ 𝑖 ) → ( 𝑓 ∈ 𝐴 ↔ ( 𝑈 ‘ 𝑖 ) ∈ 𝐴 ) ) |
93 |
92
|
anbi2d |
⊢ ( 𝑓 = ( 𝑈 ‘ 𝑖 ) → ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ↔ ( 𝜑 ∧ ( 𝑈 ‘ 𝑖 ) ∈ 𝐴 ) ) ) |
94 |
|
feq1 |
⊢ ( 𝑓 = ( 𝑈 ‘ 𝑖 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) |
95 |
93 94
|
imbi12d |
⊢ ( 𝑓 = ( 𝑈 ‘ 𝑖 ) → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑖 ) ∈ 𝐴 ) → ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) ) |
96 |
20
|
a1i |
⊢ ( 𝑓 ∈ 𝐴 → ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) ) |
97 |
95 96
|
vtoclga |
⊢ ( ( 𝑈 ‘ 𝑖 ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑖 ) ∈ 𝐴 ) → ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) |
98 |
97
|
anabsi7 |
⊢ ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑖 ) ∈ 𝐴 ) → ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) |
99 |
91 98
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) |
100 |
99
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ) → ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) |
101 |
11
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) ∈ 𝑉 ) |
102 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝜑 ) |
103 |
102 101
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝜑 ∧ ( 𝑊 ‘ 𝑖 ) ∈ 𝑉 ) ) |
104 |
4
|
nfel2 |
⊢ Ⅎ 𝑤 ( 𝑊 ‘ 𝑖 ) ∈ 𝑉 |
105 |
3 104
|
nfan |
⊢ Ⅎ 𝑤 ( 𝜑 ∧ ( 𝑊 ‘ 𝑖 ) ∈ 𝑉 ) |
106 |
|
nfv |
⊢ Ⅎ 𝑤 ( 𝑊 ‘ 𝑖 ) ⊆ 𝑇 |
107 |
105 106
|
nfim |
⊢ Ⅎ 𝑤 ( ( 𝜑 ∧ ( 𝑊 ‘ 𝑖 ) ∈ 𝑉 ) → ( 𝑊 ‘ 𝑖 ) ⊆ 𝑇 ) |
108 |
|
eleq1 |
⊢ ( 𝑤 = ( 𝑊 ‘ 𝑖 ) → ( 𝑤 ∈ 𝑉 ↔ ( 𝑊 ‘ 𝑖 ) ∈ 𝑉 ) ) |
109 |
108
|
anbi2d |
⊢ ( 𝑤 = ( 𝑊 ‘ 𝑖 ) → ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ) ↔ ( 𝜑 ∧ ( 𝑊 ‘ 𝑖 ) ∈ 𝑉 ) ) ) |
110 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝑊 ‘ 𝑖 ) → ( 𝑤 ⊆ 𝑇 ↔ ( 𝑊 ‘ 𝑖 ) ⊆ 𝑇 ) ) |
111 |
109 110
|
imbi12d |
⊢ ( 𝑤 = ( 𝑊 ‘ 𝑖 ) → ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ) → 𝑤 ⊆ 𝑇 ) ↔ ( ( 𝜑 ∧ ( 𝑊 ‘ 𝑖 ) ∈ 𝑉 ) → ( 𝑊 ‘ 𝑖 ) ⊆ 𝑇 ) ) ) |
112 |
107 111 13
|
vtoclg1f |
⊢ ( ( 𝑊 ‘ 𝑖 ) ∈ 𝑉 → ( ( 𝜑 ∧ ( 𝑊 ‘ 𝑖 ) ∈ 𝑉 ) → ( 𝑊 ‘ 𝑖 ) ⊆ 𝑇 ) ) |
113 |
101 103 112
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑊 ‘ 𝑖 ) ⊆ 𝑇 ) |
114 |
113
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ) → 𝑡 ∈ 𝑇 ) |
115 |
100 114
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
116 |
22
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
117 |
116
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ) → 𝐸 ∈ ℝ ) |
118 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ) → 𝑀 ∈ ℝ ) |
119 |
10
|
nnne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
120 |
119
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ) → 𝑀 ≠ 0 ) |
121 |
117 118 120
|
redivcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ) → ( 𝐸 / 𝑀 ) ∈ ℝ ) |
122 |
17
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) |
123 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
124 |
|
0lt1 |
⊢ 0 < 1 |
125 |
124
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
126 |
10
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑀 ) |
127 |
22
|
rpregt0d |
⊢ ( 𝜑 → ( 𝐸 ∈ ℝ ∧ 0 < 𝐸 ) ) |
128 |
|
lediv2 |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 𝑀 ∈ ℝ ∧ 0 < 𝑀 ) ∧ ( 𝐸 ∈ ℝ ∧ 0 < 𝐸 ) ) → ( 1 ≤ 𝑀 ↔ ( 𝐸 / 𝑀 ) ≤ ( 𝐸 / 1 ) ) ) |
129 |
123 125 29 126 127 128
|
syl221anc |
⊢ ( 𝜑 → ( 1 ≤ 𝑀 ↔ ( 𝐸 / 𝑀 ) ≤ ( 𝐸 / 1 ) ) ) |
130 |
28 129
|
mpbid |
⊢ ( 𝜑 → ( 𝐸 / 𝑀 ) ≤ ( 𝐸 / 1 ) ) |
131 |
22
|
rpcnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
132 |
131
|
div1d |
⊢ ( 𝜑 → ( 𝐸 / 1 ) = 𝐸 ) |
133 |
130 132
|
breqtrd |
⊢ ( 𝜑 → ( 𝐸 / 𝑀 ) ≤ 𝐸 ) |
134 |
133
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ) → ( 𝐸 / 𝑀 ) ≤ 𝐸 ) |
135 |
115 121 117 122 134
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) < 𝐸 ) |
136 |
135
|
ex |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) < 𝐸 ) ) |
137 |
82 136
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) < 𝐸 ) |
138 |
1 2 5 6 7 8 9 10 11 12 14 15 137 21 20 19 22
|
stoweidlem48 |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝐷 ( 𝑋 ‘ 𝑡 ) < 𝐸 ) |
139 |
25
|
sseli |
⊢ ( 𝑓 ∈ 𝑌 → 𝑓 ∈ 𝐴 ) |
140 |
139 20
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
141 |
1 2 62 6 7 8 9 10 12 18 22 23 140 33 21 16
|
stoweidlem42 |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑋 ‘ 𝑡 ) ) |
142 |
80 138 141
|
3jca |
⊢ ( 𝜑 → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑋 ‘ 𝑡 ) ∧ ( 𝑋 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑋 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑋 ‘ 𝑡 ) ) ) |
143 |
35 142
|
jca |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑋 ‘ 𝑡 ) ∧ ( 𝑋 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑋 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑋 ‘ 𝑡 ) ) ) ) |
144 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴 ) ) |
145 |
70
|
nfeq2 |
⊢ Ⅎ 𝑡 𝑥 = 𝑋 |
146 |
|
fveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ‘ 𝑡 ) = ( 𝑋 ‘ 𝑡 ) ) |
147 |
146
|
breq2d |
⊢ ( 𝑥 = 𝑋 → ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ↔ 0 ≤ ( 𝑋 ‘ 𝑡 ) ) ) |
148 |
146
|
breq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ‘ 𝑡 ) ≤ 1 ↔ ( 𝑋 ‘ 𝑡 ) ≤ 1 ) ) |
149 |
147 148
|
anbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( 𝑋 ‘ 𝑡 ) ∧ ( 𝑋 ‘ 𝑡 ) ≤ 1 ) ) ) |
150 |
145 149
|
ralbid |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑋 ‘ 𝑡 ) ∧ ( 𝑋 ‘ 𝑡 ) ≤ 1 ) ) ) |
151 |
146
|
breq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ‘ 𝑡 ) < 𝐸 ↔ ( 𝑋 ‘ 𝑡 ) < 𝐸 ) ) |
152 |
145 151
|
ralbid |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ↔ ∀ 𝑡 ∈ 𝐷 ( 𝑋 ‘ 𝑡 ) < 𝐸 ) ) |
153 |
146
|
breq2d |
⊢ ( 𝑥 = 𝑋 → ( ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ↔ ( 1 − 𝐸 ) < ( 𝑋 ‘ 𝑡 ) ) ) |
154 |
145 153
|
ralbid |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ↔ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑋 ‘ 𝑡 ) ) ) |
155 |
150 152 154
|
3anbi123d |
⊢ ( 𝑥 = 𝑋 → ( ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ) ↔ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑋 ‘ 𝑡 ) ∧ ( 𝑋 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑋 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑋 ‘ 𝑡 ) ) ) ) |
156 |
144 155
|
anbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ) ) ↔ ( 𝑋 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑋 ‘ 𝑡 ) ∧ ( 𝑋 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑋 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑋 ‘ 𝑡 ) ) ) ) ) |
157 |
156
|
spcegv |
⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝑋 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑋 ‘ 𝑡 ) ∧ ( 𝑋 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑋 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑋 ‘ 𝑡 ) ) ) → ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ) ) ) ) |
158 |
35 143 157
|
sylc |
⊢ ( 𝜑 → ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ) ) ) |