Metamath Proof Explorer


Theorem stoweidlem51

Description: There exists a function x as in the proof of Lemma 2 in BrosowskiDeutsh p. 91. Here D is used to represent A in the paper, because here A is used for the subalgebra of functions. E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem51.1 𝑖 𝜑
stoweidlem51.2 𝑡 𝜑
stoweidlem51.3 𝑤 𝜑
stoweidlem51.4 𝑤 𝑉
stoweidlem51.5 𝑌 = { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) }
stoweidlem51.6 𝑃 = ( 𝑓𝑌 , 𝑔𝑌 ↦ ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) )
stoweidlem51.7 𝑋 = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 )
stoweidlem51.8 𝐹 = ( 𝑡𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) )
stoweidlem51.9 𝑍 = ( 𝑡𝑇 ↦ ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) )
stoweidlem51.10 ( 𝜑𝑀 ∈ ℕ )
stoweidlem51.11 ( 𝜑𝑊 : ( 1 ... 𝑀 ) ⟶ 𝑉 )
stoweidlem51.12 ( 𝜑𝑈 : ( 1 ... 𝑀 ) ⟶ 𝑌 )
stoweidlem51.13 ( ( 𝜑𝑤𝑉 ) → 𝑤𝑇 )
stoweidlem51.14 ( 𝜑𝐷 ran 𝑊 )
stoweidlem51.15 ( 𝜑𝐷𝑇 )
stoweidlem51.16 ( 𝜑𝐵𝑇 )
stoweidlem51.17 ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑈𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) )
stoweidlem51.18 ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑈𝑖 ) ‘ 𝑡 ) )
stoweidlem51.19 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
stoweidlem51.20 ( ( 𝜑𝑓𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ )
stoweidlem51.21 ( 𝜑𝑇 ∈ V )
stoweidlem51.22 ( 𝜑𝐸 ∈ ℝ+ )
stoweidlem51.23 ( 𝜑𝐸 < ( 1 / 3 ) )
Assertion stoweidlem51 ( 𝜑 → ∃ 𝑥 ( 𝑥𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ) ) )

Proof

Step Hyp Ref Expression
1 stoweidlem51.1 𝑖 𝜑
2 stoweidlem51.2 𝑡 𝜑
3 stoweidlem51.3 𝑤 𝜑
4 stoweidlem51.4 𝑤 𝑉
5 stoweidlem51.5 𝑌 = { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) }
6 stoweidlem51.6 𝑃 = ( 𝑓𝑌 , 𝑔𝑌 ↦ ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) )
7 stoweidlem51.7 𝑋 = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 )
8 stoweidlem51.8 𝐹 = ( 𝑡𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) )
9 stoweidlem51.9 𝑍 = ( 𝑡𝑇 ↦ ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) )
10 stoweidlem51.10 ( 𝜑𝑀 ∈ ℕ )
11 stoweidlem51.11 ( 𝜑𝑊 : ( 1 ... 𝑀 ) ⟶ 𝑉 )
12 stoweidlem51.12 ( 𝜑𝑈 : ( 1 ... 𝑀 ) ⟶ 𝑌 )
13 stoweidlem51.13 ( ( 𝜑𝑤𝑉 ) → 𝑤𝑇 )
14 stoweidlem51.14 ( 𝜑𝐷 ran 𝑊 )
15 stoweidlem51.15 ( 𝜑𝐷𝑇 )
16 stoweidlem51.16 ( 𝜑𝐵𝑇 )
17 stoweidlem51.17 ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑈𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) )
18 stoweidlem51.18 ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑈𝑖 ) ‘ 𝑡 ) )
19 stoweidlem51.19 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
20 stoweidlem51.20 ( ( 𝜑𝑓𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ )
21 stoweidlem51.21 ( 𝜑𝑇 ∈ V )
22 stoweidlem51.22 ( 𝜑𝐸 ∈ ℝ+ )
23 stoweidlem51.23 ( 𝜑𝐸 < ( 1 / 3 ) )
24 ssrab2 { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) } ⊆ 𝐴
25 5 24 eqsstri 𝑌𝐴
26 1zzd ( 𝜑 → 1 ∈ ℤ )
27 10 nnzd ( 𝜑𝑀 ∈ ℤ )
28 10 nnge1d ( 𝜑 → 1 ≤ 𝑀 )
29 10 nnred ( 𝜑𝑀 ∈ ℝ )
30 29 leidd ( 𝜑𝑀𝑀 )
31 26 27 27 28 30 elfzd ( 𝜑𝑀 ∈ ( 1 ... 𝑀 ) )
32 eqid ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) = ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) )
33 2 5 32 20 19 stoweidlem16 ( ( 𝜑𝑓𝑌𝑔𝑌 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝑌 )
34 6 7 31 12 33 21 fmulcl ( 𝜑𝑋𝑌 )
35 25 34 sselid ( 𝜑𝑋𝐴 )
36 5 eleq2i ( 𝑋𝑌𝑋 ∈ { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) } )
37 nfcv 1
38 nfrab1 { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) }
39 5 38 nfcxfr 𝑌
40 nfcv ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) )
41 39 39 40 nfmpo ( 𝑓𝑌 , 𝑔𝑌 ↦ ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) )
42 6 41 nfcxfr 𝑃
43 nfcv 𝑈
44 37 42 43 nfseq seq 1 ( 𝑃 , 𝑈 )
45 nfcv 𝑀
46 44 45 nffv ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 )
47 7 46 nfcxfr 𝑋
48 nfcv 𝐴
49 nfcv 𝑇
50 nfcv 0
51 nfcv
52 nfcv 𝑡
53 47 52 nffv ( 𝑋𝑡 )
54 50 51 53 nfbr 0 ≤ ( 𝑋𝑡 )
55 53 51 37 nfbr ( 𝑋𝑡 ) ≤ 1
56 54 55 nfan ( 0 ≤ ( 𝑋𝑡 ) ∧ ( 𝑋𝑡 ) ≤ 1 )
57 49 56 nfralw 𝑡𝑇 ( 0 ≤ ( 𝑋𝑡 ) ∧ ( 𝑋𝑡 ) ≤ 1 )
58 nfcv 𝑡 1
59 nfra1 𝑡𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 )
60 nfcv 𝑡 𝐴
61 59 60 nfrabw 𝑡 { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) }
62 5 61 nfcxfr 𝑡 𝑌
63 nfmpt1 𝑡 ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) )
64 62 62 63 nfmpo 𝑡 ( 𝑓𝑌 , 𝑔𝑌 ↦ ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) )
65 6 64 nfcxfr 𝑡 𝑃
66 nfcv 𝑡 𝑈
67 58 65 66 nfseq 𝑡 seq 1 ( 𝑃 , 𝑈 )
68 nfcv 𝑡 𝑀
69 67 68 nffv 𝑡 ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 )
70 7 69 nfcxfr 𝑡 𝑋
71 70 nfeq2 𝑡 = 𝑋
72 fveq1 ( = 𝑋 → ( 𝑡 ) = ( 𝑋𝑡 ) )
73 72 breq2d ( = 𝑋 → ( 0 ≤ ( 𝑡 ) ↔ 0 ≤ ( 𝑋𝑡 ) ) )
74 72 breq1d ( = 𝑋 → ( ( 𝑡 ) ≤ 1 ↔ ( 𝑋𝑡 ) ≤ 1 ) )
75 73 74 anbi12d ( = 𝑋 → ( ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( 𝑋𝑡 ) ∧ ( 𝑋𝑡 ) ≤ 1 ) ) )
76 71 75 ralbid ( = 𝑋 → ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑋𝑡 ) ∧ ( 𝑋𝑡 ) ≤ 1 ) ) )
77 47 48 57 76 elrabf ( 𝑋 ∈ { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) } ↔ ( 𝑋𝐴 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑋𝑡 ) ∧ ( 𝑋𝑡 ) ≤ 1 ) ) )
78 36 77 bitri ( 𝑋𝑌 ↔ ( 𝑋𝐴 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑋𝑡 ) ∧ ( 𝑋𝑡 ) ≤ 1 ) ) )
79 34 78 sylib ( 𝜑 → ( 𝑋𝐴 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑋𝑡 ) ∧ ( 𝑋𝑡 ) ≤ 1 ) ) )
80 79 simprd ( 𝜑 → ∀ 𝑡𝑇 ( 0 ≤ ( 𝑋𝑡 ) ∧ ( 𝑋𝑡 ) ≤ 1 ) )
81 nfv 𝑡 𝑖 ∈ ( 1 ... 𝑀 )
82 2 81 nfan 𝑡 ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) )
83 12 ffvelrnda ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈𝑖 ) ∈ 𝑌 )
84 fveq1 ( = ( 𝑈𝑖 ) → ( 𝑡 ) = ( ( 𝑈𝑖 ) ‘ 𝑡 ) )
85 84 breq2d ( = ( 𝑈𝑖 ) → ( 0 ≤ ( 𝑡 ) ↔ 0 ≤ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) )
86 84 breq1d ( = ( 𝑈𝑖 ) → ( ( 𝑡 ) ≤ 1 ↔ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ≤ 1 ) )
87 85 86 anbi12d ( = ( 𝑈𝑖 ) → ( ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ∧ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) )
88 87 ralbidv ( = ( 𝑈𝑖 ) → ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡𝑇 ( 0 ≤ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ∧ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) )
89 88 5 elrab2 ( ( 𝑈𝑖 ) ∈ 𝑌 ↔ ( ( 𝑈𝑖 ) ∈ 𝐴 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ∧ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) )
90 89 simplbi ( ( 𝑈𝑖 ) ∈ 𝑌 → ( 𝑈𝑖 ) ∈ 𝐴 )
91 83 90 syl ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈𝑖 ) ∈ 𝐴 )
92 eleq1 ( 𝑓 = ( 𝑈𝑖 ) → ( 𝑓𝐴 ↔ ( 𝑈𝑖 ) ∈ 𝐴 ) )
93 92 anbi2d ( 𝑓 = ( 𝑈𝑖 ) → ( ( 𝜑𝑓𝐴 ) ↔ ( 𝜑 ∧ ( 𝑈𝑖 ) ∈ 𝐴 ) ) )
94 feq1 ( 𝑓 = ( 𝑈𝑖 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝑈𝑖 ) : 𝑇 ⟶ ℝ ) )
95 93 94 imbi12d ( 𝑓 = ( 𝑈𝑖 ) → ( ( ( 𝜑𝑓𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝑈𝑖 ) ∈ 𝐴 ) → ( 𝑈𝑖 ) : 𝑇 ⟶ ℝ ) ) )
96 20 a1i ( 𝑓𝐴 → ( ( 𝜑𝑓𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) )
97 95 96 vtoclga ( ( 𝑈𝑖 ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝑈𝑖 ) ∈ 𝐴 ) → ( 𝑈𝑖 ) : 𝑇 ⟶ ℝ ) )
98 97 anabsi7 ( ( 𝜑 ∧ ( 𝑈𝑖 ) ∈ 𝐴 ) → ( 𝑈𝑖 ) : 𝑇 ⟶ ℝ )
99 91 98 syldan ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈𝑖 ) : 𝑇 ⟶ ℝ )
100 99 adantr ( ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊𝑖 ) ) → ( 𝑈𝑖 ) : 𝑇 ⟶ ℝ )
101 11 ffvelrnda ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑊𝑖 ) ∈ 𝑉 )
102 simpl ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝜑 )
103 102 101 jca ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝜑 ∧ ( 𝑊𝑖 ) ∈ 𝑉 ) )
104 4 nfel2 𝑤 ( 𝑊𝑖 ) ∈ 𝑉
105 3 104 nfan 𝑤 ( 𝜑 ∧ ( 𝑊𝑖 ) ∈ 𝑉 )
106 nfv 𝑤 ( 𝑊𝑖 ) ⊆ 𝑇
107 105 106 nfim 𝑤 ( ( 𝜑 ∧ ( 𝑊𝑖 ) ∈ 𝑉 ) → ( 𝑊𝑖 ) ⊆ 𝑇 )
108 eleq1 ( 𝑤 = ( 𝑊𝑖 ) → ( 𝑤𝑉 ↔ ( 𝑊𝑖 ) ∈ 𝑉 ) )
109 108 anbi2d ( 𝑤 = ( 𝑊𝑖 ) → ( ( 𝜑𝑤𝑉 ) ↔ ( 𝜑 ∧ ( 𝑊𝑖 ) ∈ 𝑉 ) ) )
110 sseq1 ( 𝑤 = ( 𝑊𝑖 ) → ( 𝑤𝑇 ↔ ( 𝑊𝑖 ) ⊆ 𝑇 ) )
111 109 110 imbi12d ( 𝑤 = ( 𝑊𝑖 ) → ( ( ( 𝜑𝑤𝑉 ) → 𝑤𝑇 ) ↔ ( ( 𝜑 ∧ ( 𝑊𝑖 ) ∈ 𝑉 ) → ( 𝑊𝑖 ) ⊆ 𝑇 ) ) )
112 107 111 13 vtoclg1f ( ( 𝑊𝑖 ) ∈ 𝑉 → ( ( 𝜑 ∧ ( 𝑊𝑖 ) ∈ 𝑉 ) → ( 𝑊𝑖 ) ⊆ 𝑇 ) )
113 101 103 112 sylc ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑊𝑖 ) ⊆ 𝑇 )
114 113 sselda ( ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊𝑖 ) ) → 𝑡𝑇 )
115 100 114 ffvelrnd ( ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊𝑖 ) ) → ( ( 𝑈𝑖 ) ‘ 𝑡 ) ∈ ℝ )
116 22 rpred ( 𝜑𝐸 ∈ ℝ )
117 116 ad2antrr ( ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊𝑖 ) ) → 𝐸 ∈ ℝ )
118 29 ad2antrr ( ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊𝑖 ) ) → 𝑀 ∈ ℝ )
119 10 nnne0d ( 𝜑𝑀 ≠ 0 )
120 119 ad2antrr ( ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊𝑖 ) ) → 𝑀 ≠ 0 )
121 117 118 120 redivcld ( ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊𝑖 ) ) → ( 𝐸 / 𝑀 ) ∈ ℝ )
122 17 r19.21bi ( ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊𝑖 ) ) → ( ( 𝑈𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) )
123 1red ( 𝜑 → 1 ∈ ℝ )
124 0lt1 0 < 1
125 124 a1i ( 𝜑 → 0 < 1 )
126 10 nngt0d ( 𝜑 → 0 < 𝑀 )
127 22 rpregt0d ( 𝜑 → ( 𝐸 ∈ ℝ ∧ 0 < 𝐸 ) )
128 lediv2 ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 𝑀 ∈ ℝ ∧ 0 < 𝑀 ) ∧ ( 𝐸 ∈ ℝ ∧ 0 < 𝐸 ) ) → ( 1 ≤ 𝑀 ↔ ( 𝐸 / 𝑀 ) ≤ ( 𝐸 / 1 ) ) )
129 123 125 29 126 127 128 syl221anc ( 𝜑 → ( 1 ≤ 𝑀 ↔ ( 𝐸 / 𝑀 ) ≤ ( 𝐸 / 1 ) ) )
130 28 129 mpbid ( 𝜑 → ( 𝐸 / 𝑀 ) ≤ ( 𝐸 / 1 ) )
131 22 rpcnd ( 𝜑𝐸 ∈ ℂ )
132 131 div1d ( 𝜑 → ( 𝐸 / 1 ) = 𝐸 )
133 130 132 breqtrd ( 𝜑 → ( 𝐸 / 𝑀 ) ≤ 𝐸 )
134 133 ad2antrr ( ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊𝑖 ) ) → ( 𝐸 / 𝑀 ) ≤ 𝐸 )
135 115 121 117 122 134 ltletrd ( ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑊𝑖 ) ) → ( ( 𝑈𝑖 ) ‘ 𝑡 ) < 𝐸 )
136 135 ex ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑡 ∈ ( 𝑊𝑖 ) → ( ( 𝑈𝑖 ) ‘ 𝑡 ) < 𝐸 ) )
137 82 136 ralrimi ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑈𝑖 ) ‘ 𝑡 ) < 𝐸 )
138 1 2 5 6 7 8 9 10 11 12 14 15 137 21 20 19 22 stoweidlem48 ( 𝜑 → ∀ 𝑡𝐷 ( 𝑋𝑡 ) < 𝐸 )
139 25 sseli ( 𝑓𝑌𝑓𝐴 )
140 139 20 sylan2 ( ( 𝜑𝑓𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ )
141 1 2 62 6 7 8 9 10 12 18 22 23 140 33 21 16 stoweidlem42 ( 𝜑 → ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑋𝑡 ) )
142 80 138 141 3jca ( 𝜑 → ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑋𝑡 ) ∧ ( 𝑋𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑋𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑋𝑡 ) ) )
143 35 142 jca ( 𝜑 → ( 𝑋𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑋𝑡 ) ∧ ( 𝑋𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑋𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑋𝑡 ) ) ) )
144 eleq1 ( 𝑥 = 𝑋 → ( 𝑥𝐴𝑋𝐴 ) )
145 70 nfeq2 𝑡 𝑥 = 𝑋
146 fveq1 ( 𝑥 = 𝑋 → ( 𝑥𝑡 ) = ( 𝑋𝑡 ) )
147 146 breq2d ( 𝑥 = 𝑋 → ( 0 ≤ ( 𝑥𝑡 ) ↔ 0 ≤ ( 𝑋𝑡 ) ) )
148 146 breq1d ( 𝑥 = 𝑋 → ( ( 𝑥𝑡 ) ≤ 1 ↔ ( 𝑋𝑡 ) ≤ 1 ) )
149 147 148 anbi12d ( 𝑥 = 𝑋 → ( ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( 𝑋𝑡 ) ∧ ( 𝑋𝑡 ) ≤ 1 ) ) )
150 145 149 ralbid ( 𝑥 = 𝑋 → ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ↔ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑋𝑡 ) ∧ ( 𝑋𝑡 ) ≤ 1 ) ) )
151 146 breq1d ( 𝑥 = 𝑋 → ( ( 𝑥𝑡 ) < 𝐸 ↔ ( 𝑋𝑡 ) < 𝐸 ) )
152 145 151 ralbid ( 𝑥 = 𝑋 → ( ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ↔ ∀ 𝑡𝐷 ( 𝑋𝑡 ) < 𝐸 ) )
153 146 breq2d ( 𝑥 = 𝑋 → ( ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ↔ ( 1 − 𝐸 ) < ( 𝑋𝑡 ) ) )
154 145 153 ralbid ( 𝑥 = 𝑋 → ( ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ↔ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑋𝑡 ) ) )
155 150 152 154 3anbi123d ( 𝑥 = 𝑋 → ( ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ) ↔ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑋𝑡 ) ∧ ( 𝑋𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑋𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑋𝑡 ) ) ) )
156 144 155 anbi12d ( 𝑥 = 𝑋 → ( ( 𝑥𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ) ) ↔ ( 𝑋𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑋𝑡 ) ∧ ( 𝑋𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑋𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑋𝑡 ) ) ) ) )
157 156 spcegv ( 𝑋𝐴 → ( ( 𝑋𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑋𝑡 ) ∧ ( 𝑋𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑋𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑋𝑡 ) ) ) → ∃ 𝑥 ( 𝑥𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ) ) ) )
158 35 143 157 sylc ( 𝜑 → ∃ 𝑥 ( 𝑥𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ) ) )