Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem53.1 |
⊢ Ⅎ 𝑡 𝑈 |
2 |
|
stoweidlem53.2 |
⊢ Ⅎ 𝑡 𝜑 |
3 |
|
stoweidlem53.3 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
4 |
|
stoweidlem53.4 |
⊢ 𝑄 = { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } |
5 |
|
stoweidlem53.5 |
⊢ 𝑊 = { 𝑤 ∈ 𝐽 ∣ ∃ ℎ ∈ 𝑄 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } |
6 |
|
stoweidlem53.6 |
⊢ 𝑇 = ∪ 𝐽 |
7 |
|
stoweidlem53.7 |
⊢ 𝐶 = ( 𝐽 Cn 𝐾 ) |
8 |
|
stoweidlem53.8 |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
9 |
|
stoweidlem53.9 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
10 |
|
stoweidlem53.10 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
11 |
|
stoweidlem53.11 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
12 |
|
stoweidlem53.12 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
13 |
|
stoweidlem53.13 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ‘ 𝑟 ) ≠ ( 𝑞 ‘ 𝑡 ) ) |
14 |
|
stoweidlem53.14 |
⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) |
15 |
|
stoweidlem53.15 |
⊢ ( 𝜑 → ( 𝑇 ∖ 𝑈 ) ≠ ∅ ) |
16 |
|
stoweidlem53.16 |
⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) |
17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16
|
stoweidlem50 |
⊢ ( 𝜑 → ∃ 𝑢 ( 𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) |
18 |
|
nfv |
⊢ Ⅎ 𝑡 𝑢 ∈ Fin |
19 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑢 |
20 |
|
nfv |
⊢ Ⅎ 𝑡 ( ℎ ‘ 𝑍 ) = 0 |
21 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) |
22 |
20 21
|
nfan |
⊢ Ⅎ 𝑡 ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) |
23 |
|
nfcv |
⊢ Ⅎ 𝑡 𝐴 |
24 |
22 23
|
nfrabw |
⊢ Ⅎ 𝑡 { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } |
25 |
4 24
|
nfcxfr |
⊢ Ⅎ 𝑡 𝑄 |
26 |
|
nfrab1 |
⊢ Ⅎ 𝑡 { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } |
27 |
26
|
nfeq2 |
⊢ Ⅎ 𝑡 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } |
28 |
25 27
|
nfrex |
⊢ Ⅎ 𝑡 ∃ ℎ ∈ 𝑄 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } |
29 |
|
nfcv |
⊢ Ⅎ 𝑡 𝐽 |
30 |
28 29
|
nfrabw |
⊢ Ⅎ 𝑡 { 𝑤 ∈ 𝐽 ∣ ∃ ℎ ∈ 𝑄 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } |
31 |
5 30
|
nfcxfr |
⊢ Ⅎ 𝑡 𝑊 |
32 |
19 31
|
nfss |
⊢ Ⅎ 𝑡 𝑢 ⊆ 𝑊 |
33 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑇 |
34 |
33 1
|
nfdif |
⊢ Ⅎ 𝑡 ( 𝑇 ∖ 𝑈 ) |
35 |
|
nfcv |
⊢ Ⅎ 𝑡 ∪ 𝑢 |
36 |
34 35
|
nfss |
⊢ Ⅎ 𝑡 ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 |
37 |
18 32 36
|
nf3an |
⊢ Ⅎ 𝑡 ( 𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) |
38 |
2 37
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ ( 𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) |
39 |
|
nfv |
⊢ Ⅎ 𝑤 𝜑 |
40 |
|
nfv |
⊢ Ⅎ 𝑤 𝑢 ∈ Fin |
41 |
|
nfcv |
⊢ Ⅎ 𝑤 𝑢 |
42 |
|
nfrab1 |
⊢ Ⅎ 𝑤 { 𝑤 ∈ 𝐽 ∣ ∃ ℎ ∈ 𝑄 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } |
43 |
5 42
|
nfcxfr |
⊢ Ⅎ 𝑤 𝑊 |
44 |
41 43
|
nfss |
⊢ Ⅎ 𝑤 𝑢 ⊆ 𝑊 |
45 |
|
nfv |
⊢ Ⅎ 𝑤 ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 |
46 |
40 44 45
|
nf3an |
⊢ Ⅎ 𝑤 ( 𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) |
47 |
39 46
|
nfan |
⊢ Ⅎ 𝑤 ( 𝜑 ∧ ( 𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) |
48 |
|
nfv |
⊢ Ⅎ ℎ 𝜑 |
49 |
|
nfv |
⊢ Ⅎ ℎ 𝑢 ∈ Fin |
50 |
|
nfcv |
⊢ Ⅎ ℎ 𝑢 |
51 |
|
nfre1 |
⊢ Ⅎ ℎ ∃ ℎ ∈ 𝑄 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } |
52 |
|
nfcv |
⊢ Ⅎ ℎ 𝐽 |
53 |
51 52
|
nfrabw |
⊢ Ⅎ ℎ { 𝑤 ∈ 𝐽 ∣ ∃ ℎ ∈ 𝑄 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } |
54 |
5 53
|
nfcxfr |
⊢ Ⅎ ℎ 𝑊 |
55 |
50 54
|
nfss |
⊢ Ⅎ ℎ 𝑢 ⊆ 𝑊 |
56 |
|
nfv |
⊢ Ⅎ ℎ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 |
57 |
49 55 56
|
nf3an |
⊢ Ⅎ ℎ ( 𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) |
58 |
48 57
|
nfan |
⊢ Ⅎ ℎ ( 𝜑 ∧ ( 𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) |
59 |
|
eqid |
⊢ ( 𝑤 ∈ 𝑢 ↦ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) = ( 𝑤 ∈ 𝑢 ↦ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) |
60 |
|
cmptop |
⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) |
61 |
8 60
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
62 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
63 |
3 62
|
eqeltri |
⊢ 𝐾 ∈ Top |
64 |
|
cnfex |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 Cn 𝐾 ) ∈ V ) |
65 |
61 63 64
|
sylancl |
⊢ ( 𝜑 → ( 𝐽 Cn 𝐾 ) ∈ V ) |
66 |
9 7
|
sseqtrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝐽 Cn 𝐾 ) ) |
67 |
65 66
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
68 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) → 𝐴 ∈ V ) |
69 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) → 𝑢 ∈ Fin ) |
70 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) → 𝑢 ⊆ 𝑊 ) |
71 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) → ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) |
72 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) → ( 𝑇 ∖ 𝑈 ) ≠ ∅ ) |
73 |
38 47 58 4 5 59 68 69 70 71 72
|
stoweidlem35 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑢 ) ) → ∃ 𝑚 ∃ 𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
74 |
17 73
|
exlimddv |
⊢ ( 𝜑 → ∃ 𝑚 ∃ 𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
75 |
|
nfv |
⊢ Ⅎ 𝑖 𝜑 |
76 |
|
nfv |
⊢ Ⅎ 𝑖 𝑚 ∈ ℕ |
77 |
|
nfv |
⊢ Ⅎ 𝑖 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 |
78 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝑇 ∖ 𝑈 ) |
79 |
|
nfre1 |
⊢ Ⅎ 𝑖 ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) |
80 |
78 79
|
nfralw |
⊢ Ⅎ 𝑖 ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) |
81 |
77 80
|
nfan |
⊢ Ⅎ 𝑖 ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) |
82 |
76 81
|
nfan |
⊢ Ⅎ 𝑖 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
83 |
75 82
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
84 |
|
nfv |
⊢ Ⅎ 𝑡 𝑚 ∈ ℕ |
85 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑞 |
86 |
|
nfcv |
⊢ Ⅎ 𝑡 ( 1 ... 𝑚 ) |
87 |
85 86 25
|
nff |
⊢ Ⅎ 𝑡 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 |
88 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) |
89 |
87 88
|
nfan |
⊢ Ⅎ 𝑡 ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) |
90 |
84 89
|
nfan |
⊢ Ⅎ 𝑡 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
91 |
2 90
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
92 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ ( ( 1 / 𝑚 ) · Σ 𝑦 ∈ ( 1 ... 𝑚 ) ( ( 𝑞 ‘ 𝑦 ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 1 / 𝑚 ) · Σ 𝑦 ∈ ( 1 ... 𝑚 ) ( ( 𝑞 ‘ 𝑦 ) ‘ 𝑡 ) ) ) |
93 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → 𝑚 ∈ ℕ ) |
94 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ) |
95 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) |
96 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → 𝐴 ⊆ ( 𝐽 Cn 𝐾 ) ) |
97 |
10
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
98 |
11
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
99 |
12
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
100 |
|
elssuni |
⊢ ( 𝑈 ∈ 𝐽 → 𝑈 ⊆ ∪ 𝐽 ) |
101 |
100 6
|
sseqtrrdi |
⊢ ( 𝑈 ∈ 𝐽 → 𝑈 ⊆ 𝑇 ) |
102 |
14 101
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ 𝑇 ) |
103 |
102 16
|
sseldd |
⊢ ( 𝜑 → 𝑍 ∈ 𝑇 ) |
104 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → 𝑍 ∈ 𝑇 ) |
105 |
83 91 3 4 92 93 94 95 6 96 97 98 99 104
|
stoweidlem44 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → ∃ 𝑝 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) |
106 |
105
|
ex |
⊢ ( 𝜑 → ( ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) → ∃ 𝑝 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) |
107 |
106
|
exlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑚 ∃ 𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) → ∃ 𝑝 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) |
108 |
74 107
|
mpd |
⊢ ( 𝜑 → ∃ 𝑝 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) |