| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							stoweidlem53.1 | 
							⊢ Ⅎ 𝑡 𝑈  | 
						
						
							| 2 | 
							
								
							 | 
							stoweidlem53.2 | 
							⊢ Ⅎ 𝑡 𝜑  | 
						
						
							| 3 | 
							
								
							 | 
							stoweidlem53.3 | 
							⊢ 𝐾  =  ( topGen ‘ ran  (,) )  | 
						
						
							| 4 | 
							
								
							 | 
							stoweidlem53.4 | 
							⊢ 𝑄  =  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) }  | 
						
						
							| 5 | 
							
								
							 | 
							stoweidlem53.5 | 
							⊢ 𝑊  =  { 𝑤  ∈  𝐽  ∣  ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  | 
						
						
							| 6 | 
							
								
							 | 
							stoweidlem53.6 | 
							⊢ 𝑇  =  ∪  𝐽  | 
						
						
							| 7 | 
							
								
							 | 
							stoweidlem53.7 | 
							⊢ 𝐶  =  ( 𝐽  Cn  𝐾 )  | 
						
						
							| 8 | 
							
								
							 | 
							stoweidlem53.8 | 
							⊢ ( 𝜑  →  𝐽  ∈  Comp )  | 
						
						
							| 9 | 
							
								
							 | 
							stoweidlem53.9 | 
							⊢ ( 𝜑  →  𝐴  ⊆  𝐶 )  | 
						
						
							| 10 | 
							
								
							 | 
							stoweidlem53.10 | 
							⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  | 
						
						
							| 11 | 
							
								
							 | 
							stoweidlem53.11 | 
							⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  | 
						
						
							| 12 | 
							
								
							 | 
							stoweidlem53.12 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 )  | 
						
						
							| 13 | 
							
								
							 | 
							stoweidlem53.13 | 
							⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑡  ∈  𝑇  ∧  𝑟  ≠  𝑡 ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ‘ 𝑟 )  ≠  ( 𝑞 ‘ 𝑡 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							stoweidlem53.14 | 
							⊢ ( 𝜑  →  𝑈  ∈  𝐽 )  | 
						
						
							| 15 | 
							
								
							 | 
							stoweidlem53.15 | 
							⊢ ( 𝜑  →  ( 𝑇  ∖  𝑈 )  ≠  ∅ )  | 
						
						
							| 16 | 
							
								
							 | 
							stoweidlem53.16 | 
							⊢ ( 𝜑  →  𝑍  ∈  𝑈 )  | 
						
						
							| 17 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 16
							 | 
							stoweidlem50 | 
							⊢ ( 𝜑  →  ∃ 𝑢 ( 𝑢  ∈  Fin  ∧  𝑢  ⊆  𝑊  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑡 𝑢  ∈  Fin  | 
						
						
							| 19 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑡 𝑢  | 
						
						
							| 20 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑡 ( ℎ ‘ 𝑍 )  =  0  | 
						
						
							| 21 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							nfan | 
							⊢ Ⅎ 𝑡 ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑡 𝐴  | 
						
						
							| 24 | 
							
								22 23
							 | 
							nfrabw | 
							⊢ Ⅎ 𝑡 { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) }  | 
						
						
							| 25 | 
							
								4 24
							 | 
							nfcxfr | 
							⊢ Ⅎ 𝑡 𝑄  | 
						
						
							| 26 | 
							
								
							 | 
							nfrab1 | 
							⊢ Ⅎ 𝑡 { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) }  | 
						
						
							| 27 | 
							
								26
							 | 
							nfeq2 | 
							⊢ Ⅎ 𝑡 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) }  | 
						
						
							| 28 | 
							
								25 27
							 | 
							nfrexw | 
							⊢ Ⅎ 𝑡 ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) }  | 
						
						
							| 29 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑡 𝐽  | 
						
						
							| 30 | 
							
								28 29
							 | 
							nfrabw | 
							⊢ Ⅎ 𝑡 { 𝑤  ∈  𝐽  ∣  ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  | 
						
						
							| 31 | 
							
								5 30
							 | 
							nfcxfr | 
							⊢ Ⅎ 𝑡 𝑊  | 
						
						
							| 32 | 
							
								19 31
							 | 
							nfss | 
							⊢ Ⅎ 𝑡 𝑢  ⊆  𝑊  | 
						
						
							| 33 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑡 𝑇  | 
						
						
							| 34 | 
							
								33 1
							 | 
							nfdif | 
							⊢ Ⅎ 𝑡 ( 𝑇  ∖  𝑈 )  | 
						
						
							| 35 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑡 ∪  𝑢  | 
						
						
							| 36 | 
							
								34 35
							 | 
							nfss | 
							⊢ Ⅎ 𝑡 ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢  | 
						
						
							| 37 | 
							
								18 32 36
							 | 
							nf3an | 
							⊢ Ⅎ 𝑡 ( 𝑢  ∈  Fin  ∧  𝑢  ⊆  𝑊  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 )  | 
						
						
							| 38 | 
							
								2 37
							 | 
							nfan | 
							⊢ Ⅎ 𝑡 ( 𝜑  ∧  ( 𝑢  ∈  Fin  ∧  𝑢  ⊆  𝑊  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑤 𝜑  | 
						
						
							| 40 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑤 𝑢  ∈  Fin  | 
						
						
							| 41 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑤 𝑢  | 
						
						
							| 42 | 
							
								
							 | 
							nfrab1 | 
							⊢ Ⅎ 𝑤 { 𝑤  ∈  𝐽  ∣  ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  | 
						
						
							| 43 | 
							
								5 42
							 | 
							nfcxfr | 
							⊢ Ⅎ 𝑤 𝑊  | 
						
						
							| 44 | 
							
								41 43
							 | 
							nfss | 
							⊢ Ⅎ 𝑤 𝑢  ⊆  𝑊  | 
						
						
							| 45 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑤 ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢  | 
						
						
							| 46 | 
							
								40 44 45
							 | 
							nf3an | 
							⊢ Ⅎ 𝑤 ( 𝑢  ∈  Fin  ∧  𝑢  ⊆  𝑊  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 )  | 
						
						
							| 47 | 
							
								39 46
							 | 
							nfan | 
							⊢ Ⅎ 𝑤 ( 𝜑  ∧  ( 𝑢  ∈  Fin  ∧  𝑢  ⊆  𝑊  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) )  | 
						
						
							| 48 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ ℎ 𝜑  | 
						
						
							| 49 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ ℎ 𝑢  ∈  Fin  | 
						
						
							| 50 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ ℎ 𝑢  | 
						
						
							| 51 | 
							
								
							 | 
							nfre1 | 
							⊢ Ⅎ ℎ ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) }  | 
						
						
							| 52 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ ℎ 𝐽  | 
						
						
							| 53 | 
							
								51 52
							 | 
							nfrabw | 
							⊢ Ⅎ ℎ { 𝑤  ∈  𝐽  ∣  ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  | 
						
						
							| 54 | 
							
								5 53
							 | 
							nfcxfr | 
							⊢ Ⅎ ℎ 𝑊  | 
						
						
							| 55 | 
							
								50 54
							 | 
							nfss | 
							⊢ Ⅎ ℎ 𝑢  ⊆  𝑊  | 
						
						
							| 56 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ ℎ ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢  | 
						
						
							| 57 | 
							
								49 55 56
							 | 
							nf3an | 
							⊢ Ⅎ ℎ ( 𝑢  ∈  Fin  ∧  𝑢  ⊆  𝑊  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 )  | 
						
						
							| 58 | 
							
								48 57
							 | 
							nfan | 
							⊢ Ⅎ ℎ ( 𝜑  ∧  ( 𝑢  ∈  Fin  ∧  𝑢  ⊆  𝑊  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) )  | 
						
						
							| 59 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑤  ∈  𝑢  ↦  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } )  =  ( 𝑤  ∈  𝑢  ↦  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } )  | 
						
						
							| 60 | 
							
								
							 | 
							cmptop | 
							⊢ ( 𝐽  ∈  Comp  →  𝐽  ∈  Top )  | 
						
						
							| 61 | 
							
								8 60
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐽  ∈  Top )  | 
						
						
							| 62 | 
							
								
							 | 
							retop | 
							⊢ ( topGen ‘ ran  (,) )  ∈  Top  | 
						
						
							| 63 | 
							
								3 62
							 | 
							eqeltri | 
							⊢ 𝐾  ∈  Top  | 
						
						
							| 64 | 
							
								
							 | 
							cnfex | 
							⊢ ( ( 𝐽  ∈  Top  ∧  𝐾  ∈  Top )  →  ( 𝐽  Cn  𝐾 )  ∈  V )  | 
						
						
							| 65 | 
							
								61 63 64
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( 𝐽  Cn  𝐾 )  ∈  V )  | 
						
						
							| 66 | 
							
								9 7
							 | 
							sseqtrdi | 
							⊢ ( 𝜑  →  𝐴  ⊆  ( 𝐽  Cn  𝐾 ) )  | 
						
						
							| 67 | 
							
								65 66
							 | 
							ssexd | 
							⊢ ( 𝜑  →  𝐴  ∈  V )  | 
						
						
							| 68 | 
							
								67
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  Fin  ∧  𝑢  ⊆  𝑊  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) )  →  𝐴  ∈  V )  | 
						
						
							| 69 | 
							
								
							 | 
							simpr1 | 
							⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  Fin  ∧  𝑢  ⊆  𝑊  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) )  →  𝑢  ∈  Fin )  | 
						
						
							| 70 | 
							
								
							 | 
							simpr2 | 
							⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  Fin  ∧  𝑢  ⊆  𝑊  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) )  →  𝑢  ⊆  𝑊 )  | 
						
						
							| 71 | 
							
								
							 | 
							simpr3 | 
							⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  Fin  ∧  𝑢  ⊆  𝑊  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) )  →  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 )  | 
						
						
							| 72 | 
							
								15
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  Fin  ∧  𝑢  ⊆  𝑊  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) )  →  ( 𝑇  ∖  𝑈 )  ≠  ∅ )  | 
						
						
							| 73 | 
							
								38 47 58 4 5 59 68 69 70 71 72
							 | 
							stoweidlem35 | 
							⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  Fin  ∧  𝑢  ⊆  𝑊  ∧  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑢 ) )  →  ∃ 𝑚 ∃ 𝑞 ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  | 
						
						
							| 74 | 
							
								17 73
							 | 
							exlimddv | 
							⊢ ( 𝜑  →  ∃ 𝑚 ∃ 𝑞 ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  | 
						
						
							| 75 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑖 𝜑  | 
						
						
							| 76 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑖 𝑚  ∈  ℕ  | 
						
						
							| 77 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑖 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  | 
						
						
							| 78 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑖 ( 𝑇  ∖  𝑈 )  | 
						
						
							| 79 | 
							
								
							 | 
							nfre1 | 
							⊢ Ⅎ 𝑖 ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 )  | 
						
						
							| 80 | 
							
								78 79
							 | 
							nfralw | 
							⊢ Ⅎ 𝑖 ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 )  | 
						
						
							| 81 | 
							
								77 80
							 | 
							nfan | 
							⊢ Ⅎ 𝑖 ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) )  | 
						
						
							| 82 | 
							
								76 81
							 | 
							nfan | 
							⊢ Ⅎ 𝑖 ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) )  | 
						
						
							| 83 | 
							
								75 82
							 | 
							nfan | 
							⊢ Ⅎ 𝑖 ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  | 
						
						
							| 84 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑡 𝑚  ∈  ℕ  | 
						
						
							| 85 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑡 𝑞  | 
						
						
							| 86 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑡 ( 1 ... 𝑚 )  | 
						
						
							| 87 | 
							
								85 86 25
							 | 
							nff | 
							⊢ Ⅎ 𝑡 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  | 
						
						
							| 88 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 )  | 
						
						
							| 89 | 
							
								87 88
							 | 
							nfan | 
							⊢ Ⅎ 𝑡 ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) )  | 
						
						
							| 90 | 
							
								84 89
							 | 
							nfan | 
							⊢ Ⅎ 𝑡 ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) )  | 
						
						
							| 91 | 
							
								2 90
							 | 
							nfan | 
							⊢ Ⅎ 𝑡 ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  | 
						
						
							| 92 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑡  ∈  𝑇  ↦  ( ( 1  /  𝑚 )  ·  Σ 𝑦  ∈  ( 1 ... 𝑚 ) ( ( 𝑞 ‘ 𝑦 ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 1  /  𝑚 )  ·  Σ 𝑦  ∈  ( 1 ... 𝑚 ) ( ( 𝑞 ‘ 𝑦 ) ‘ 𝑡 ) ) )  | 
						
						
							| 93 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝑚  ∈  ℕ )  | 
						
						
							| 94 | 
							
								
							 | 
							simprrl | 
							⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 )  | 
						
						
							| 95 | 
							
								
							 | 
							simprrr | 
							⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) )  | 
						
						
							| 96 | 
							
								66
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝐴  ⊆  ( 𝐽  Cn  𝐾 ) )  | 
						
						
							| 97 | 
							
								10
							 | 
							3adant1r | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  | 
						
						
							| 98 | 
							
								11
							 | 
							3adant1r | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  | 
						
						
							| 99 | 
							
								12
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 )  | 
						
						
							| 100 | 
							
								
							 | 
							elssuni | 
							⊢ ( 𝑈  ∈  𝐽  →  𝑈  ⊆  ∪  𝐽 )  | 
						
						
							| 101 | 
							
								100 6
							 | 
							sseqtrrdi | 
							⊢ ( 𝑈  ∈  𝐽  →  𝑈  ⊆  𝑇 )  | 
						
						
							| 102 | 
							
								14 101
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑈  ⊆  𝑇 )  | 
						
						
							| 103 | 
							
								102 16
							 | 
							sseldd | 
							⊢ ( 𝜑  →  𝑍  ∈  𝑇 )  | 
						
						
							| 104 | 
							
								103
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝑍  ∈  𝑇 )  | 
						
						
							| 105 | 
							
								83 91 3 4 92 93 94 95 6 96 97 98 99 104
							 | 
							stoweidlem44 | 
							⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  ∃ 𝑝  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							ex | 
							⊢ ( 𝜑  →  ( ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) )  →  ∃ 𝑝  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							exlimdvv | 
							⊢ ( 𝜑  →  ( ∃ 𝑚 ∃ 𝑞 ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) )  →  ∃ 𝑝  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  | 
						
						
							| 108 | 
							
								74 107
							 | 
							mpd | 
							⊢ ( 𝜑  →  ∃ 𝑝  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) )  |