Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem54.1 |
⊢ Ⅎ 𝑖 𝜑 |
2 |
|
stoweidlem54.2 |
⊢ Ⅎ 𝑡 𝜑 |
3 |
|
stoweidlem54.3 |
⊢ Ⅎ 𝑦 𝜑 |
4 |
|
stoweidlem54.4 |
⊢ Ⅎ 𝑤 𝜑 |
5 |
|
stoweidlem54.5 |
⊢ 𝑇 = ∪ 𝐽 |
6 |
|
stoweidlem54.6 |
⊢ 𝑌 = { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } |
7 |
|
stoweidlem54.7 |
⊢ 𝑃 = ( 𝑓 ∈ 𝑌 , 𝑔 ∈ 𝑌 ↦ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ) |
8 |
|
stoweidlem54.8 |
⊢ 𝐹 = ( 𝑡 ∈ 𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
9 |
|
stoweidlem54.9 |
⊢ 𝑍 = ( 𝑡 ∈ 𝑇 ↦ ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) |
10 |
|
stoweidlem54.10 |
⊢ 𝑉 = { 𝑤 ∈ 𝐽 ∣ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) } |
11 |
|
stoweidlem54.11 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
12 |
|
stoweidlem54.12 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
13 |
|
stoweidlem54.13 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
14 |
|
stoweidlem54.14 |
⊢ ( 𝜑 → 𝑊 : ( 1 ... 𝑀 ) ⟶ 𝑉 ) |
15 |
|
stoweidlem54.15 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑇 ) |
16 |
|
stoweidlem54.16 |
⊢ ( 𝜑 → 𝐷 ⊆ ∪ ran 𝑊 ) |
17 |
|
stoweidlem54.17 |
⊢ ( 𝜑 → 𝐷 ⊆ 𝑇 ) |
18 |
|
stoweidlem54.18 |
⊢ ( 𝜑 → ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
19 |
|
stoweidlem54.19 |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
20 |
|
stoweidlem54.20 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
21 |
|
stoweidlem54.21 |
⊢ ( 𝜑 → 𝐸 < ( 1 / 3 ) ) |
22 |
|
nfv |
⊢ Ⅎ 𝑦 ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ) ) |
23 |
|
nfv |
⊢ Ⅎ 𝑖 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 |
24 |
|
nfra1 |
⊢ Ⅎ 𝑖 ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) |
25 |
23 24
|
nfan |
⊢ Ⅎ 𝑖 ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
26 |
1 25
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
27 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑦 |
28 |
|
nfcv |
⊢ Ⅎ 𝑡 ( 1 ... 𝑀 ) |
29 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) |
30 |
|
nfcv |
⊢ Ⅎ 𝑡 𝐴 |
31 |
29 30
|
nfrabw |
⊢ Ⅎ 𝑡 { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } |
32 |
6 31
|
nfcxfr |
⊢ Ⅎ 𝑡 𝑌 |
33 |
27 28 32
|
nff |
⊢ Ⅎ 𝑡 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 |
34 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) |
35 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) |
36 |
34 35
|
nfan |
⊢ Ⅎ 𝑡 ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) |
37 |
28 36
|
nfralw |
⊢ Ⅎ 𝑡 ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) |
38 |
33 37
|
nfan |
⊢ Ⅎ 𝑡 ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
39 |
2 38
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
40 |
|
nfv |
⊢ Ⅎ 𝑤 ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
41 |
4 40
|
nfan |
⊢ Ⅎ 𝑤 ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
42 |
|
nfrab1 |
⊢ Ⅎ 𝑤 { 𝑤 ∈ 𝐽 ∣ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) } |
43 |
10 42
|
nfcxfr |
⊢ Ⅎ 𝑤 𝑉 |
44 |
|
eqid |
⊢ ( seq 1 ( 𝑃 , 𝑦 ) ‘ 𝑀 ) = ( seq 1 ( 𝑃 , 𝑦 ) ‘ 𝑀 ) |
45 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → 𝑀 ∈ ℕ ) |
46 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → 𝑊 : ( 1 ... 𝑀 ) ⟶ 𝑉 ) |
47 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ) |
48 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ∧ 𝑤 ∈ 𝑉 ) → 𝑤 ∈ 𝑉 ) |
49 |
10
|
rabeq2i |
⊢ ( 𝑤 ∈ 𝑉 ↔ ( 𝑤 ∈ 𝐽 ∧ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) ) ) |
50 |
49
|
simplbi |
⊢ ( 𝑤 ∈ 𝑉 → 𝑤 ∈ 𝐽 ) |
51 |
|
elssuni |
⊢ ( 𝑤 ∈ 𝐽 → 𝑤 ⊆ ∪ 𝐽 ) |
52 |
51 5
|
sseqtrrdi |
⊢ ( 𝑤 ∈ 𝐽 → 𝑤 ⊆ 𝑇 ) |
53 |
48 50 52
|
3syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ∧ 𝑤 ∈ 𝑉 ) → 𝑤 ⊆ 𝑇 ) |
54 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → 𝐷 ⊆ ∪ ran 𝑊 ) |
55 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → 𝐷 ⊆ 𝑇 ) |
56 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → 𝐵 ⊆ 𝑇 ) |
57 |
|
r19.26 |
⊢ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ↔ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
58 |
57
|
simplbi |
⊢ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) |
59 |
58
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) |
60 |
59
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) |
61 |
57
|
simprbi |
⊢ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) |
62 |
61
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) |
63 |
62
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) |
64 |
11
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
65 |
12
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
66 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → 𝑇 ∈ V ) |
67 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → 𝐸 ∈ ℝ+ ) |
68 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → 𝐸 < ( 1 / 3 ) ) |
69 |
26 39 41 43 6 7 44 8 9 45 46 47 53 54 55 56 60 63 64 65 66 67 68
|
stoweidlem51 |
⊢ ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ) ) ) |
70 |
3 22 18 69
|
exlimdd |
⊢ ( 𝜑 → ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ) ) ) |
71 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ) ) ) |
72 |
70 71
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ) ) |