| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							stoweidlem54.1 | 
							⊢ Ⅎ 𝑖 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							stoweidlem54.2 | 
							⊢ Ⅎ 𝑡 𝜑  | 
						
						
							| 3 | 
							
								
							 | 
							stoweidlem54.3 | 
							⊢ Ⅎ 𝑦 𝜑  | 
						
						
							| 4 | 
							
								
							 | 
							stoweidlem54.4 | 
							⊢ Ⅎ 𝑤 𝜑  | 
						
						
							| 5 | 
							
								
							 | 
							stoweidlem54.5 | 
							⊢ 𝑇  =  ∪  𝐽  | 
						
						
							| 6 | 
							
								
							 | 
							stoweidlem54.6 | 
							⊢ 𝑌  =  { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) }  | 
						
						
							| 7 | 
							
								
							 | 
							stoweidlem54.7 | 
							⊢ 𝑃  =  ( 𝑓  ∈  𝑌 ,  𝑔  ∈  𝑌  ↦  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							stoweidlem54.8 | 
							⊢ 𝐹  =  ( 𝑡  ∈  𝑇  ↦  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							stoweidlem54.9 | 
							⊢ 𝑍  =  ( 𝑡  ∈  𝑇  ↦  ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							stoweidlem54.10 | 
							⊢ 𝑉  =  { 𝑤  ∈  𝐽  ∣  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) }  | 
						
						
							| 11 | 
							
								
							 | 
							stoweidlem54.11 | 
							⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  | 
						
						
							| 12 | 
							
								
							 | 
							stoweidlem54.12 | 
							⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ )  | 
						
						
							| 13 | 
							
								
							 | 
							stoweidlem54.13 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℕ )  | 
						
						
							| 14 | 
							
								
							 | 
							stoweidlem54.14 | 
							⊢ ( 𝜑  →  𝑊 : ( 1 ... 𝑀 ) ⟶ 𝑉 )  | 
						
						
							| 15 | 
							
								
							 | 
							stoweidlem54.15 | 
							⊢ ( 𝜑  →  𝐵  ⊆  𝑇 )  | 
						
						
							| 16 | 
							
								
							 | 
							stoweidlem54.16 | 
							⊢ ( 𝜑  →  𝐷  ⊆  ∪  ran  𝑊 )  | 
						
						
							| 17 | 
							
								
							 | 
							stoweidlem54.17 | 
							⊢ ( 𝜑  →  𝐷  ⊆  𝑇 )  | 
						
						
							| 18 | 
							
								
							 | 
							stoweidlem54.18 | 
							⊢ ( 𝜑  →  ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							stoweidlem54.19 | 
							⊢ ( 𝜑  →  𝑇  ∈  V )  | 
						
						
							| 20 | 
							
								
							 | 
							stoweidlem54.20 | 
							⊢ ( 𝜑  →  𝐸  ∈  ℝ+ )  | 
						
						
							| 21 | 
							
								
							 | 
							stoweidlem54.21 | 
							⊢ ( 𝜑  →  𝐸  <  ( 1  /  3 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑦 ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝐷 ( 𝑥 ‘ 𝑡 )  <  𝐸  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  𝐸 )  <  ( 𝑥 ‘ 𝑡 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑖 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  | 
						
						
							| 24 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑖 ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							nfan | 
							⊢ Ⅎ 𝑖 ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) )  | 
						
						
							| 26 | 
							
								1 25
							 | 
							nfan | 
							⊢ Ⅎ 𝑖 ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑡 𝑦  | 
						
						
							| 28 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑡 ( 1 ... 𝑀 )  | 
						
						
							| 29 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  | 
						
						
							| 30 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑡 𝐴  | 
						
						
							| 31 | 
							
								29 30
							 | 
							nfrabw | 
							⊢ Ⅎ 𝑡 { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) }  | 
						
						
							| 32 | 
							
								6 31
							 | 
							nfcxfr | 
							⊢ Ⅎ 𝑡 𝑌  | 
						
						
							| 33 | 
							
								27 28 32
							 | 
							nff | 
							⊢ Ⅎ 𝑡 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  | 
						
						
							| 34 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  | 
						
						
							| 35 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							nfan | 
							⊢ Ⅎ 𝑡 ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) )  | 
						
						
							| 37 | 
							
								28 36
							 | 
							nfralw | 
							⊢ Ⅎ 𝑡 ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) )  | 
						
						
							| 38 | 
							
								33 37
							 | 
							nfan | 
							⊢ Ⅎ 𝑡 ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) )  | 
						
						
							| 39 | 
							
								2 38
							 | 
							nfan | 
							⊢ Ⅎ 𝑡 ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑤 ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) )  | 
						
						
							| 41 | 
							
								4 40
							 | 
							nfan | 
							⊢ Ⅎ 𝑤 ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							nfrab1 | 
							⊢ Ⅎ 𝑤 { 𝑤  ∈  𝐽  ∣  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) }  | 
						
						
							| 43 | 
							
								10 42
							 | 
							nfcxfr | 
							⊢ Ⅎ 𝑤 𝑉  | 
						
						
							| 44 | 
							
								
							 | 
							eqid | 
							⊢ ( seq 1 ( 𝑃 ,  𝑦 ) ‘ 𝑀 )  =  ( seq 1 ( 𝑃 ,  𝑦 ) ‘ 𝑀 )  | 
						
						
							| 45 | 
							
								13
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝑀  ∈  ℕ )  | 
						
						
							| 46 | 
							
								14
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝑊 : ( 1 ... 𝑀 ) ⟶ 𝑉 )  | 
						
						
							| 47 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 )  | 
						
						
							| 48 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  ∧  𝑤  ∈  𝑉 )  →  𝑤  ∈  𝑉 )  | 
						
						
							| 49 | 
							
								10
							 | 
							reqabi | 
							⊢ ( 𝑤  ∈  𝑉  ↔  ( 𝑤  ∈  𝐽  ∧  ∀ 𝑒  ∈  ℝ+ ∃ ℎ  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑤 ( ℎ ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( ℎ ‘ 𝑡 ) ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							simplbi | 
							⊢ ( 𝑤  ∈  𝑉  →  𝑤  ∈  𝐽 )  | 
						
						
							| 51 | 
							
								
							 | 
							elssuni | 
							⊢ ( 𝑤  ∈  𝐽  →  𝑤  ⊆  ∪  𝐽 )  | 
						
						
							| 52 | 
							
								51 5
							 | 
							sseqtrrdi | 
							⊢ ( 𝑤  ∈  𝐽  →  𝑤  ⊆  𝑇 )  | 
						
						
							| 53 | 
							
								48 50 52
							 | 
							3syl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  ∧  𝑤  ∈  𝑉 )  →  𝑤  ⊆  𝑇 )  | 
						
						
							| 54 | 
							
								16
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝐷  ⊆  ∪  ran  𝑊 )  | 
						
						
							| 55 | 
							
								17
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝐷  ⊆  𝑇 )  | 
						
						
							| 56 | 
							
								15
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝐵  ⊆  𝑇 )  | 
						
						
							| 57 | 
							
								
							 | 
							r19.26 | 
							⊢ ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) )  ↔  ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							simplbi | 
							⊢ ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) )  →  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							ad2antll | 
							⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							r19.21bi | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 ) )  | 
						
						
							| 61 | 
							
								57
							 | 
							simprbi | 
							⊢ ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) )  →  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							ad2antll | 
							⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							r19.21bi | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) )  | 
						
						
							| 64 | 
							
								11
							 | 
							3adant1r | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  | 
						
						
							| 65 | 
							
								12
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ )  | 
						
						
							| 66 | 
							
								19
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝑇  ∈  V )  | 
						
						
							| 67 | 
							
								20
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝐸  ∈  ℝ+ )  | 
						
						
							| 68 | 
							
								21
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  𝐸  <  ( 1  /  3 ) )  | 
						
						
							| 69 | 
							
								26 39 41 43 6 7 44 8 9 45 46 47 53 54 55 56 60 63 64 65 66 67 68
							 | 
							stoweidlem51 | 
							⊢ ( ( 𝜑  ∧  ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑀 )  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) )  →  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝐷 ( 𝑥 ‘ 𝑡 )  <  𝐸  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  𝐸 )  <  ( 𝑥 ‘ 𝑡 ) ) ) )  | 
						
						
							| 70 | 
							
								3 22 18 69
							 | 
							exlimdd | 
							⊢ ( 𝜑  →  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝐷 ( 𝑥 ‘ 𝑡 )  <  𝐸  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  𝐸 )  <  ( 𝑥 ‘ 𝑡 ) ) ) )  | 
						
						
							| 71 | 
							
								
							 | 
							df-rex | 
							⊢ ( ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝐷 ( 𝑥 ‘ 𝑡 )  <  𝐸  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  𝐸 )  <  ( 𝑥 ‘ 𝑡 ) )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝐷 ( 𝑥 ‘ 𝑡 )  <  𝐸  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  𝐸 )  <  ( 𝑥 ‘ 𝑡 ) ) ) )  | 
						
						
							| 72 | 
							
								70 71
							 | 
							sylibr | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝐷 ( 𝑥 ‘ 𝑡 )  <  𝐸  ∧  ∀ 𝑡  ∈  𝐵 ( 1  −  𝐸 )  <  ( 𝑥 ‘ 𝑡 ) ) )  |