Metamath Proof Explorer


Theorem stoweidlem54

Description: There exists a function x as in the proof of Lemma 2 in BrosowskiDeutsh p. 91. Here D is used to represent A in the paper, because here A is used for the subalgebra of functions. E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem54.1 𝑖 𝜑
stoweidlem54.2 𝑡 𝜑
stoweidlem54.3 𝑦 𝜑
stoweidlem54.4 𝑤 𝜑
stoweidlem54.5 𝑇 = 𝐽
stoweidlem54.6 𝑌 = { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) }
stoweidlem54.7 𝑃 = ( 𝑓𝑌 , 𝑔𝑌 ↦ ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) )
stoweidlem54.8 𝐹 = ( 𝑡𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) )
stoweidlem54.9 𝑍 = ( 𝑡𝑇 ↦ ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) )
stoweidlem54.10 𝑉 = { 𝑤𝐽 ∣ ∀ 𝑒 ∈ ℝ+𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − 𝑒 ) < ( 𝑡 ) ) }
stoweidlem54.11 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
stoweidlem54.12 ( ( 𝜑𝑓𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ )
stoweidlem54.13 ( 𝜑𝑀 ∈ ℕ )
stoweidlem54.14 ( 𝜑𝑊 : ( 1 ... 𝑀 ) ⟶ 𝑉 )
stoweidlem54.15 ( 𝜑𝐵𝑇 )
stoweidlem54.16 ( 𝜑𝐷 ran 𝑊 )
stoweidlem54.17 ( 𝜑𝐷𝑇 )
stoweidlem54.18 ( 𝜑 → ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) )
stoweidlem54.19 ( 𝜑𝑇 ∈ V )
stoweidlem54.20 ( 𝜑𝐸 ∈ ℝ+ )
stoweidlem54.21 ( 𝜑𝐸 < ( 1 / 3 ) )
Assertion stoweidlem54 ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ) )

Proof

Step Hyp Ref Expression
1 stoweidlem54.1 𝑖 𝜑
2 stoweidlem54.2 𝑡 𝜑
3 stoweidlem54.3 𝑦 𝜑
4 stoweidlem54.4 𝑤 𝜑
5 stoweidlem54.5 𝑇 = 𝐽
6 stoweidlem54.6 𝑌 = { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) }
7 stoweidlem54.7 𝑃 = ( 𝑓𝑌 , 𝑔𝑌 ↦ ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) )
8 stoweidlem54.8 𝐹 = ( 𝑡𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) )
9 stoweidlem54.9 𝑍 = ( 𝑡𝑇 ↦ ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) )
10 stoweidlem54.10 𝑉 = { 𝑤𝐽 ∣ ∀ 𝑒 ∈ ℝ+𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − 𝑒 ) < ( 𝑡 ) ) }
11 stoweidlem54.11 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
12 stoweidlem54.12 ( ( 𝜑𝑓𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ )
13 stoweidlem54.13 ( 𝜑𝑀 ∈ ℕ )
14 stoweidlem54.14 ( 𝜑𝑊 : ( 1 ... 𝑀 ) ⟶ 𝑉 )
15 stoweidlem54.15 ( 𝜑𝐵𝑇 )
16 stoweidlem54.16 ( 𝜑𝐷 ran 𝑊 )
17 stoweidlem54.17 ( 𝜑𝐷𝑇 )
18 stoweidlem54.18 ( 𝜑 → ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) )
19 stoweidlem54.19 ( 𝜑𝑇 ∈ V )
20 stoweidlem54.20 ( 𝜑𝐸 ∈ ℝ+ )
21 stoweidlem54.21 ( 𝜑𝐸 < ( 1 / 3 ) )
22 nfv 𝑦𝑥 ( 𝑥𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ) )
23 nfv 𝑖 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌
24 nfra1 𝑖𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) )
25 23 24 nfan 𝑖 ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) )
26 1 25 nfan 𝑖 ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) )
27 nfcv 𝑡 𝑦
28 nfcv 𝑡 ( 1 ... 𝑀 )
29 nfra1 𝑡𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 )
30 nfcv 𝑡 𝐴
31 29 30 nfrabw 𝑡 { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) }
32 6 31 nfcxfr 𝑡 𝑌
33 27 28 32 nff 𝑡 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌
34 nfra1 𝑡𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 )
35 nfra1 𝑡𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 )
36 34 35 nfan 𝑡 ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) )
37 28 36 nfralw 𝑡𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) )
38 33 37 nfan 𝑡 ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) )
39 2 38 nfan 𝑡 ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) )
40 nfv 𝑤 ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) )
41 4 40 nfan 𝑤 ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) )
42 nfrab1 𝑤 { 𝑤𝐽 ∣ ∀ 𝑒 ∈ ℝ+𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − 𝑒 ) < ( 𝑡 ) ) }
43 10 42 nfcxfr 𝑤 𝑉
44 eqid ( seq 1 ( 𝑃 , 𝑦 ) ‘ 𝑀 ) = ( seq 1 ( 𝑃 , 𝑦 ) ‘ 𝑀 )
45 13 adantr ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) ) → 𝑀 ∈ ℕ )
46 14 adantr ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) ) → 𝑊 : ( 1 ... 𝑀 ) ⟶ 𝑉 )
47 simprl ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) ) → 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 )
48 simpr ( ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) ) ∧ 𝑤𝑉 ) → 𝑤𝑉 )
49 10 rabeq2i ( 𝑤𝑉 ↔ ( 𝑤𝐽 ∧ ∀ 𝑒 ∈ ℝ+𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − 𝑒 ) < ( 𝑡 ) ) ) )
50 49 simplbi ( 𝑤𝑉𝑤𝐽 )
51 elssuni ( 𝑤𝐽𝑤 𝐽 )
52 51 5 sseqtrrdi ( 𝑤𝐽𝑤𝑇 )
53 48 50 52 3syl ( ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) ) ∧ 𝑤𝑉 ) → 𝑤𝑇 )
54 16 adantr ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) ) → 𝐷 ran 𝑊 )
55 17 adantr ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) ) → 𝐷𝑇 )
56 15 adantr ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) ) → 𝐵𝑇 )
57 r19.26 ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ↔ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) )
58 57 simplbi ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) )
59 58 ad2antll ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) )
60 59 r19.21bi ( ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) )
61 57 simprbi ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) )
62 61 ad2antll ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) )
63 62 r19.21bi ( ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) )
64 11 3adant1r ( ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) ) ∧ 𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
65 12 adantlr ( ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) ) ∧ 𝑓𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ )
66 19 adantr ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) ) → 𝑇 ∈ V )
67 20 adantr ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) ) → 𝐸 ∈ ℝ+ )
68 21 adantr ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) ) → 𝐸 < ( 1 / 3 ) )
69 26 39 41 43 6 7 44 8 9 45 46 47 53 54 55 56 60 63 64 65 66 67 68 stoweidlem51 ( ( 𝜑 ∧ ( 𝑦 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑊𝑖 ) ( ( 𝑦𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑦𝑖 ) ‘ 𝑡 ) ) ) ) → ∃ 𝑥 ( 𝑥𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ) ) )
70 3 22 18 69 exlimdd ( 𝜑 → ∃ 𝑥 ( 𝑥𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ) ) )
71 df-rex ( ∃ 𝑥𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ) ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ) ) )
72 70 71 sylibr ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ) )