Metamath Proof Explorer


Theorem stoweidlem55

Description: This lemma proves the existence of a function p as in the proof of Lemma 1 in BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 <= p <= 1, p__(t_0) = 0, and p > 0 on T - U. Here Z is used to represent t_0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem55.1 𝑡 𝑈
stoweidlem55.2 𝑡 𝜑
stoweidlem55.3 𝐾 = ( topGen ‘ ran (,) )
stoweidlem55.4 ( 𝜑𝐽 ∈ Comp )
stoweidlem55.5 𝑇 = 𝐽
stoweidlem55.6 𝐶 = ( 𝐽 Cn 𝐾 )
stoweidlem55.7 ( 𝜑𝐴𝐶 )
stoweidlem55.8 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) + ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
stoweidlem55.9 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
stoweidlem55.10 ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝑡𝑇𝑥 ) ∈ 𝐴 )
stoweidlem55.11 ( ( 𝜑 ∧ ( 𝑟𝑇𝑡𝑇𝑟𝑡 ) ) → ∃ 𝑞𝐴 ( 𝑞𝑟 ) ≠ ( 𝑞𝑡 ) )
stoweidlem55.12 ( 𝜑𝑈𝐽 )
stoweidlem55.13 ( 𝜑𝑍𝑈 )
stoweidlem55.14 𝑄 = { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) }
stoweidlem55.15 𝑊 = { 𝑤𝐽 ∣ ∃ 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } }
Assertion stoweidlem55 ( 𝜑 → ∃ 𝑝𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) )

Proof

Step Hyp Ref Expression
1 stoweidlem55.1 𝑡 𝑈
2 stoweidlem55.2 𝑡 𝜑
3 stoweidlem55.3 𝐾 = ( topGen ‘ ran (,) )
4 stoweidlem55.4 ( 𝜑𝐽 ∈ Comp )
5 stoweidlem55.5 𝑇 = 𝐽
6 stoweidlem55.6 𝐶 = ( 𝐽 Cn 𝐾 )
7 stoweidlem55.7 ( 𝜑𝐴𝐶 )
8 stoweidlem55.8 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) + ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
9 stoweidlem55.9 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
10 stoweidlem55.10 ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝑡𝑇𝑥 ) ∈ 𝐴 )
11 stoweidlem55.11 ( ( 𝜑 ∧ ( 𝑟𝑇𝑡𝑇𝑟𝑡 ) ) → ∃ 𝑞𝐴 ( 𝑞𝑟 ) ≠ ( 𝑞𝑡 ) )
12 stoweidlem55.12 ( 𝜑𝑈𝐽 )
13 stoweidlem55.13 ( 𝜑𝑍𝑈 )
14 stoweidlem55.14 𝑄 = { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) }
15 stoweidlem55.15 𝑊 = { 𝑤𝐽 ∣ ∃ 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } }
16 0re 0 ∈ ℝ
17 10 stoweidlem4 ( ( 𝜑 ∧ 0 ∈ ℝ ) → ( 𝑡𝑇 ↦ 0 ) ∈ 𝐴 )
18 16 17 mpan2 ( 𝜑 → ( 𝑡𝑇 ↦ 0 ) ∈ 𝐴 )
19 18 adantr ( ( 𝜑 ∧ ( 𝑇𝑈 ) = ∅ ) → ( 𝑡𝑇 ↦ 0 ) ∈ 𝐴 )
20 nfcv 𝑡 𝑇
21 20 1 nfdif 𝑡 ( 𝑇𝑈 )
22 nfcv 𝑡
23 21 22 nfeq 𝑡 ( 𝑇𝑈 ) = ∅
24 2 23 nfan 𝑡 ( 𝜑 ∧ ( 𝑇𝑈 ) = ∅ )
25 0le0 0 ≤ 0
26 0cn 0 ∈ ℂ
27 eqid ( 𝑡𝑇 ↦ 0 ) = ( 𝑡𝑇 ↦ 0 )
28 27 fvmpt2 ( ( 𝑡𝑇 ∧ 0 ∈ ℂ ) → ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) = 0 )
29 26 28 mpan2 ( 𝑡𝑇 → ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) = 0 )
30 25 29 breqtrrid ( 𝑡𝑇 → 0 ≤ ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) )
31 30 adantl ( ( ( 𝜑 ∧ ( 𝑇𝑈 ) = ∅ ) ∧ 𝑡𝑇 ) → 0 ≤ ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) )
32 0le1 0 ≤ 1
33 29 32 eqbrtrdi ( 𝑡𝑇 → ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ≤ 1 )
34 33 adantl ( ( ( 𝜑 ∧ ( 𝑇𝑈 ) = ∅ ) ∧ 𝑡𝑇 ) → ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ≤ 1 )
35 31 34 jca ( ( ( 𝜑 ∧ ( 𝑇𝑈 ) = ∅ ) ∧ 𝑡𝑇 ) → ( 0 ≤ ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ∧ ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ≤ 1 ) )
36 35 ex ( ( 𝜑 ∧ ( 𝑇𝑈 ) = ∅ ) → ( 𝑡𝑇 → ( 0 ≤ ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ∧ ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ≤ 1 ) ) )
37 24 36 ralrimi ( ( 𝜑 ∧ ( 𝑇𝑈 ) = ∅ ) → ∀ 𝑡𝑇 ( 0 ≤ ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ∧ ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ≤ 1 ) )
38 13 12 jca ( 𝜑 → ( 𝑍𝑈𝑈𝐽 ) )
39 elunii ( ( 𝑍𝑈𝑈𝐽 ) → 𝑍 𝐽 )
40 39 5 eleqtrrdi ( ( 𝑍𝑈𝑈𝐽 ) → 𝑍𝑇 )
41 eqidd ( 𝑡 = 𝑍 → 0 = 0 )
42 c0ex 0 ∈ V
43 41 27 42 fvmpt ( 𝑍𝑇 → ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑍 ) = 0 )
44 38 40 43 3syl ( 𝜑 → ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑍 ) = 0 )
45 44 adantr ( ( 𝜑 ∧ ( 𝑇𝑈 ) = ∅ ) → ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑍 ) = 0 )
46 23 rzalf ( ( 𝑇𝑈 ) = ∅ → ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) )
47 46 adantl ( ( 𝜑 ∧ ( 𝑇𝑈 ) = ∅ ) → ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) )
48 nfcv 𝑡 𝑝
49 nfmpt1 𝑡 ( 𝑡𝑇 ↦ 0 )
50 48 49 nfeq 𝑡 𝑝 = ( 𝑡𝑇 ↦ 0 )
51 fveq1 ( 𝑝 = ( 𝑡𝑇 ↦ 0 ) → ( 𝑝𝑡 ) = ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) )
52 51 breq2d ( 𝑝 = ( 𝑡𝑇 ↦ 0 ) → ( 0 ≤ ( 𝑝𝑡 ) ↔ 0 ≤ ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ) )
53 51 breq1d ( 𝑝 = ( 𝑡𝑇 ↦ 0 ) → ( ( 𝑝𝑡 ) ≤ 1 ↔ ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ≤ 1 ) )
54 52 53 anbi12d ( 𝑝 = ( 𝑡𝑇 ↦ 0 ) → ( ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ∧ ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ≤ 1 ) ) )
55 50 54 ralbid ( 𝑝 = ( 𝑡𝑇 ↦ 0 ) → ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ↔ ∀ 𝑡𝑇 ( 0 ≤ ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ∧ ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ≤ 1 ) ) )
56 fveq1 ( 𝑝 = ( 𝑡𝑇 ↦ 0 ) → ( 𝑝𝑍 ) = ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑍 ) )
57 56 eqeq1d ( 𝑝 = ( 𝑡𝑇 ↦ 0 ) → ( ( 𝑝𝑍 ) = 0 ↔ ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑍 ) = 0 ) )
58 51 breq2d ( 𝑝 = ( 𝑡𝑇 ↦ 0 ) → ( 0 < ( 𝑝𝑡 ) ↔ 0 < ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ) )
59 50 58 ralbid ( 𝑝 = ( 𝑡𝑇 ↦ 0 ) → ( ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ↔ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ) )
60 55 57 59 3anbi123d ( 𝑝 = ( 𝑡𝑇 ↦ 0 ) → ( ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) ↔ ( ∀ 𝑡𝑇 ( 0 ≤ ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ∧ ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ≤ 1 ) ∧ ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ) ) )
61 60 rspcev ( ( ( 𝑡𝑇 ↦ 0 ) ∈ 𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ∧ ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ≤ 1 ) ∧ ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( ( 𝑡𝑇 ↦ 0 ) ‘ 𝑡 ) ) ) → ∃ 𝑝𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) )
62 19 37 45 47 61 syl13anc ( ( 𝜑 ∧ ( 𝑇𝑈 ) = ∅ ) → ∃ 𝑝𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) )
63 23 nfn 𝑡 ¬ ( 𝑇𝑈 ) = ∅
64 2 63 nfan 𝑡 ( 𝜑 ∧ ¬ ( 𝑇𝑈 ) = ∅ )
65 4 adantr ( ( 𝜑 ∧ ¬ ( 𝑇𝑈 ) = ∅ ) → 𝐽 ∈ Comp )
66 7 adantr ( ( 𝜑 ∧ ¬ ( 𝑇𝑈 ) = ∅ ) → 𝐴𝐶 )
67 8 3adant1r ( ( ( 𝜑 ∧ ¬ ( 𝑇𝑈 ) = ∅ ) ∧ 𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) + ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
68 9 3adant1r ( ( ( 𝜑 ∧ ¬ ( 𝑇𝑈 ) = ∅ ) ∧ 𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
69 10 adantlr ( ( ( 𝜑 ∧ ¬ ( 𝑇𝑈 ) = ∅ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑡𝑇𝑥 ) ∈ 𝐴 )
70 11 adantlr ( ( ( 𝜑 ∧ ¬ ( 𝑇𝑈 ) = ∅ ) ∧ ( 𝑟𝑇𝑡𝑇𝑟𝑡 ) ) → ∃ 𝑞𝐴 ( 𝑞𝑟 ) ≠ ( 𝑞𝑡 ) )
71 12 adantr ( ( 𝜑 ∧ ¬ ( 𝑇𝑈 ) = ∅ ) → 𝑈𝐽 )
72 neqne ( ¬ ( 𝑇𝑈 ) = ∅ → ( 𝑇𝑈 ) ≠ ∅ )
73 72 adantl ( ( 𝜑 ∧ ¬ ( 𝑇𝑈 ) = ∅ ) → ( 𝑇𝑈 ) ≠ ∅ )
74 13 adantr ( ( 𝜑 ∧ ¬ ( 𝑇𝑈 ) = ∅ ) → 𝑍𝑈 )
75 1 64 3 14 15 5 6 65 66 67 68 69 70 71 73 74 stoweidlem53 ( ( 𝜑 ∧ ¬ ( 𝑇𝑈 ) = ∅ ) → ∃ 𝑝𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) )
76 62 75 pm2.61dan ( 𝜑 → ∃ 𝑝𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑝𝑡 ) ∧ ( 𝑝𝑡 ) ≤ 1 ) ∧ ( 𝑝𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) 0 < ( 𝑝𝑡 ) ) )