Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem55.1 |
⊢ Ⅎ 𝑡 𝑈 |
2 |
|
stoweidlem55.2 |
⊢ Ⅎ 𝑡 𝜑 |
3 |
|
stoweidlem55.3 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
4 |
|
stoweidlem55.4 |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
5 |
|
stoweidlem55.5 |
⊢ 𝑇 = ∪ 𝐽 |
6 |
|
stoweidlem55.6 |
⊢ 𝐶 = ( 𝐽 Cn 𝐾 ) |
7 |
|
stoweidlem55.7 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
8 |
|
stoweidlem55.8 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
9 |
|
stoweidlem55.9 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
10 |
|
stoweidlem55.10 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
11 |
|
stoweidlem55.11 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ‘ 𝑟 ) ≠ ( 𝑞 ‘ 𝑡 ) ) |
12 |
|
stoweidlem55.12 |
⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) |
13 |
|
stoweidlem55.13 |
⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) |
14 |
|
stoweidlem55.14 |
⊢ 𝑄 = { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } |
15 |
|
stoweidlem55.15 |
⊢ 𝑊 = { 𝑤 ∈ 𝐽 ∣ ∃ ℎ ∈ 𝑄 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } |
16 |
|
0re |
⊢ 0 ∈ ℝ |
17 |
10
|
stoweidlem4 |
⊢ ( ( 𝜑 ∧ 0 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 0 ) ∈ 𝐴 ) |
18 |
16 17
|
mpan2 |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 0 ) ∈ 𝐴 ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) = ∅ ) → ( 𝑡 ∈ 𝑇 ↦ 0 ) ∈ 𝐴 ) |
20 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑇 |
21 |
20 1
|
nfdif |
⊢ Ⅎ 𝑡 ( 𝑇 ∖ 𝑈 ) |
22 |
|
nfcv |
⊢ Ⅎ 𝑡 ∅ |
23 |
21 22
|
nfeq |
⊢ Ⅎ 𝑡 ( 𝑇 ∖ 𝑈 ) = ∅ |
24 |
2 23
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) = ∅ ) |
25 |
|
0le0 |
⊢ 0 ≤ 0 |
26 |
|
0cn |
⊢ 0 ∈ ℂ |
27 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ 0 ) = ( 𝑡 ∈ 𝑇 ↦ 0 ) |
28 |
27
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ 0 ∈ ℂ ) → ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) = 0 ) |
29 |
26 28
|
mpan2 |
⊢ ( 𝑡 ∈ 𝑇 → ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) = 0 ) |
30 |
25 29
|
breqtrrid |
⊢ ( 𝑡 ∈ 𝑇 → 0 ≤ ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ) |
31 |
30
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) = ∅ ) ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ) |
32 |
|
0le1 |
⊢ 0 ≤ 1 |
33 |
29 32
|
eqbrtrdi |
⊢ ( 𝑡 ∈ 𝑇 → ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ≤ 1 ) |
34 |
33
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) = ∅ ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ≤ 1 ) |
35 |
31 34
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) = ∅ ) ∧ 𝑡 ∈ 𝑇 ) → ( 0 ≤ ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ∧ ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ≤ 1 ) ) |
36 |
35
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) = ∅ ) → ( 𝑡 ∈ 𝑇 → ( 0 ≤ ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ∧ ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
37 |
24 36
|
ralrimi |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) = ∅ ) → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ∧ ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ≤ 1 ) ) |
38 |
13 12
|
jca |
⊢ ( 𝜑 → ( 𝑍 ∈ 𝑈 ∧ 𝑈 ∈ 𝐽 ) ) |
39 |
|
elunii |
⊢ ( ( 𝑍 ∈ 𝑈 ∧ 𝑈 ∈ 𝐽 ) → 𝑍 ∈ ∪ 𝐽 ) |
40 |
39 5
|
eleqtrrdi |
⊢ ( ( 𝑍 ∈ 𝑈 ∧ 𝑈 ∈ 𝐽 ) → 𝑍 ∈ 𝑇 ) |
41 |
|
eqidd |
⊢ ( 𝑡 = 𝑍 → 0 = 0 ) |
42 |
|
c0ex |
⊢ 0 ∈ V |
43 |
41 27 42
|
fvmpt |
⊢ ( 𝑍 ∈ 𝑇 → ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑍 ) = 0 ) |
44 |
38 40 43
|
3syl |
⊢ ( 𝜑 → ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑍 ) = 0 ) |
45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) = ∅ ) → ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑍 ) = 0 ) |
46 |
23
|
rzalf |
⊢ ( ( 𝑇 ∖ 𝑈 ) = ∅ → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ) |
47 |
46
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) = ∅ ) → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ) |
48 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑝 |
49 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ 0 ) |
50 |
48 49
|
nfeq |
⊢ Ⅎ 𝑡 𝑝 = ( 𝑡 ∈ 𝑇 ↦ 0 ) |
51 |
|
fveq1 |
⊢ ( 𝑝 = ( 𝑡 ∈ 𝑇 ↦ 0 ) → ( 𝑝 ‘ 𝑡 ) = ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ) |
52 |
51
|
breq2d |
⊢ ( 𝑝 = ( 𝑡 ∈ 𝑇 ↦ 0 ) → ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ↔ 0 ≤ ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ) ) |
53 |
51
|
breq1d |
⊢ ( 𝑝 = ( 𝑡 ∈ 𝑇 ↦ 0 ) → ( ( 𝑝 ‘ 𝑡 ) ≤ 1 ↔ ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ≤ 1 ) ) |
54 |
52 53
|
anbi12d |
⊢ ( 𝑝 = ( 𝑡 ∈ 𝑇 ↦ 0 ) → ( ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ∧ ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
55 |
50 54
|
ralbid |
⊢ ( 𝑝 = ( 𝑡 ∈ 𝑇 ↦ 0 ) → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ∧ ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
56 |
|
fveq1 |
⊢ ( 𝑝 = ( 𝑡 ∈ 𝑇 ↦ 0 ) → ( 𝑝 ‘ 𝑍 ) = ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑍 ) ) |
57 |
56
|
eqeq1d |
⊢ ( 𝑝 = ( 𝑡 ∈ 𝑇 ↦ 0 ) → ( ( 𝑝 ‘ 𝑍 ) = 0 ↔ ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑍 ) = 0 ) ) |
58 |
51
|
breq2d |
⊢ ( 𝑝 = ( 𝑡 ∈ 𝑇 ↦ 0 ) → ( 0 < ( 𝑝 ‘ 𝑡 ) ↔ 0 < ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ) ) |
59 |
50 58
|
ralbid |
⊢ ( 𝑝 = ( 𝑡 ∈ 𝑇 ↦ 0 ) → ( ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ↔ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ) ) |
60 |
55 57 59
|
3anbi123d |
⊢ ( 𝑝 = ( 𝑡 ∈ 𝑇 ↦ 0 ) → ( ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ↔ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ∧ ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ≤ 1 ) ∧ ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ) ) ) |
61 |
60
|
rspcev |
⊢ ( ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ∧ ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ≤ 1 ) ∧ ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( ( 𝑡 ∈ 𝑇 ↦ 0 ) ‘ 𝑡 ) ) ) → ∃ 𝑝 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) |
62 |
19 37 45 47 61
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) = ∅ ) → ∃ 𝑝 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) |
63 |
23
|
nfn |
⊢ Ⅎ 𝑡 ¬ ( 𝑇 ∖ 𝑈 ) = ∅ |
64 |
2 63
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) |
65 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) → 𝐽 ∈ Comp ) |
66 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) → 𝐴 ⊆ 𝐶 ) |
67 |
8
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
68 |
9
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
69 |
10
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
70 |
11
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ‘ 𝑟 ) ≠ ( 𝑞 ‘ 𝑡 ) ) |
71 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) → 𝑈 ∈ 𝐽 ) |
72 |
|
neqne |
⊢ ( ¬ ( 𝑇 ∖ 𝑈 ) = ∅ → ( 𝑇 ∖ 𝑈 ) ≠ ∅ ) |
73 |
72
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) → ( 𝑇 ∖ 𝑈 ) ≠ ∅ ) |
74 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) → 𝑍 ∈ 𝑈 ) |
75 |
1 64 3 14 15 5 6 65 66 67 68 69 70 71 73 74
|
stoweidlem53 |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) → ∃ 𝑝 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) |
76 |
62 75
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑝 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) |