| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							stoweidlem55.1 | 
							⊢ Ⅎ 𝑡 𝑈  | 
						
						
							| 2 | 
							
								
							 | 
							stoweidlem55.2 | 
							⊢ Ⅎ 𝑡 𝜑  | 
						
						
							| 3 | 
							
								
							 | 
							stoweidlem55.3 | 
							⊢ 𝐾  =  ( topGen ‘ ran  (,) )  | 
						
						
							| 4 | 
							
								
							 | 
							stoweidlem55.4 | 
							⊢ ( 𝜑  →  𝐽  ∈  Comp )  | 
						
						
							| 5 | 
							
								
							 | 
							stoweidlem55.5 | 
							⊢ 𝑇  =  ∪  𝐽  | 
						
						
							| 6 | 
							
								
							 | 
							stoweidlem55.6 | 
							⊢ 𝐶  =  ( 𝐽  Cn  𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							stoweidlem55.7 | 
							⊢ ( 𝜑  →  𝐴  ⊆  𝐶 )  | 
						
						
							| 8 | 
							
								
							 | 
							stoweidlem55.8 | 
							⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  | 
						
						
							| 9 | 
							
								
							 | 
							stoweidlem55.9 | 
							⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  | 
						
						
							| 10 | 
							
								
							 | 
							stoweidlem55.10 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 )  | 
						
						
							| 11 | 
							
								
							 | 
							stoweidlem55.11 | 
							⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑡  ∈  𝑇  ∧  𝑟  ≠  𝑡 ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ‘ 𝑟 )  ≠  ( 𝑞 ‘ 𝑡 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							stoweidlem55.12 | 
							⊢ ( 𝜑  →  𝑈  ∈  𝐽 )  | 
						
						
							| 13 | 
							
								
							 | 
							stoweidlem55.13 | 
							⊢ ( 𝜑  →  𝑍  ∈  𝑈 )  | 
						
						
							| 14 | 
							
								
							 | 
							stoweidlem55.14 | 
							⊢ 𝑄  =  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) }  | 
						
						
							| 15 | 
							
								
							 | 
							stoweidlem55.15 | 
							⊢ 𝑊  =  { 𝑤  ∈  𝐽  ∣  ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  | 
						
						
							| 16 | 
							
								
							 | 
							0re | 
							⊢ 0  ∈  ℝ  | 
						
						
							| 17 | 
							
								10
							 | 
							stoweidlem4 | 
							⊢ ( ( 𝜑  ∧  0  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  0 )  ∈  𝐴 )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							mpan2 | 
							⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  0 )  ∈  𝐴 )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ( 𝑡  ∈  𝑇  ↦  0 )  ∈  𝐴 )  | 
						
						
							| 20 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑡 𝑇  | 
						
						
							| 21 | 
							
								20 1
							 | 
							nfdif | 
							⊢ Ⅎ 𝑡 ( 𝑇  ∖  𝑈 )  | 
						
						
							| 22 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑡 ∅  | 
						
						
							| 23 | 
							
								21 22
							 | 
							nfeq | 
							⊢ Ⅎ 𝑡 ( 𝑇  ∖  𝑈 )  =  ∅  | 
						
						
							| 24 | 
							
								2 23
							 | 
							nfan | 
							⊢ Ⅎ 𝑡 ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  | 
						
						
							| 25 | 
							
								
							 | 
							0le0 | 
							⊢ 0  ≤  0  | 
						
						
							| 26 | 
							
								
							 | 
							0cn | 
							⊢ 0  ∈  ℂ  | 
						
						
							| 27 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑡  ∈  𝑇  ↦  0 )  =  ( 𝑡  ∈  𝑇  ↦  0 )  | 
						
						
							| 28 | 
							
								27
							 | 
							fvmpt2 | 
							⊢ ( ( 𝑡  ∈  𝑇  ∧  0  ∈  ℂ )  →  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  =  0 )  | 
						
						
							| 29 | 
							
								26 28
							 | 
							mpan2 | 
							⊢ ( 𝑡  ∈  𝑇  →  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  =  0 )  | 
						
						
							| 30 | 
							
								25 29
							 | 
							breqtrrid | 
							⊢ ( 𝑡  ∈  𝑇  →  0  ≤  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  ∧  𝑡  ∈  𝑇 )  →  0  ≤  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							0le1 | 
							⊢ 0  ≤  1  | 
						
						
							| 33 | 
							
								29 32
							 | 
							eqbrtrdi | 
							⊢ ( 𝑡  ∈  𝑇  →  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ≤  1 )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ≤  1 )  | 
						
						
							| 35 | 
							
								31 34
							 | 
							jca | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  ∧  𝑡  ∈  𝑇 )  →  ( 0  ≤  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ∧  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ≤  1 ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							ex | 
							⊢ ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ( 𝑡  ∈  𝑇  →  ( 0  ≤  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ∧  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ≤  1 ) ) )  | 
						
						
							| 37 | 
							
								24 36
							 | 
							ralrimi | 
							⊢ ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ∧  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ≤  1 ) )  | 
						
						
							| 38 | 
							
								13 12
							 | 
							jca | 
							⊢ ( 𝜑  →  ( 𝑍  ∈  𝑈  ∧  𝑈  ∈  𝐽 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							elunii | 
							⊢ ( ( 𝑍  ∈  𝑈  ∧  𝑈  ∈  𝐽 )  →  𝑍  ∈  ∪  𝐽 )  | 
						
						
							| 40 | 
							
								39 5
							 | 
							eleqtrrdi | 
							⊢ ( ( 𝑍  ∈  𝑈  ∧  𝑈  ∈  𝐽 )  →  𝑍  ∈  𝑇 )  | 
						
						
							| 41 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝑡  =  𝑍  →  0  =  0 )  | 
						
						
							| 42 | 
							
								
							 | 
							c0ex | 
							⊢ 0  ∈  V  | 
						
						
							| 43 | 
							
								41 27 42
							 | 
							fvmpt | 
							⊢ ( 𝑍  ∈  𝑇  →  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑍 )  =  0 )  | 
						
						
							| 44 | 
							
								38 40 43
							 | 
							3syl | 
							⊢ ( 𝜑  →  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑍 )  =  0 )  | 
						
						
							| 45 | 
							
								44
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑍 )  =  0 )  | 
						
						
							| 46 | 
							
								23
							 | 
							rzalf | 
							⊢ ( ( 𝑇  ∖  𝑈 )  =  ∅  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 ) )  | 
						
						
							| 48 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑡 𝑝  | 
						
						
							| 49 | 
							
								
							 | 
							nfmpt1 | 
							⊢ Ⅎ 𝑡 ( 𝑡  ∈  𝑇  ↦  0 )  | 
						
						
							| 50 | 
							
								48 49
							 | 
							nfeq | 
							⊢ Ⅎ 𝑡 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 )  | 
						
						
							| 51 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 )  →  ( 𝑝 ‘ 𝑡 )  =  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							breq2d | 
							⊢ ( 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 )  →  ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ↔  0  ≤  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 ) ) )  | 
						
						
							| 53 | 
							
								51
							 | 
							breq1d | 
							⊢ ( 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 )  →  ( ( 𝑝 ‘ 𝑡 )  ≤  1  ↔  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ≤  1 ) )  | 
						
						
							| 54 | 
							
								52 53
							 | 
							anbi12d | 
							⊢ ( 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 )  →  ( ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ↔  ( 0  ≤  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ∧  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ≤  1 ) ) )  | 
						
						
							| 55 | 
							
								50 54
							 | 
							ralbid | 
							⊢ ( 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 )  →  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ↔  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ∧  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ≤  1 ) ) )  | 
						
						
							| 56 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 )  →  ( 𝑝 ‘ 𝑍 )  =  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑍 ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							eqeq1d | 
							⊢ ( 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 )  →  ( ( 𝑝 ‘ 𝑍 )  =  0  ↔  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑍 )  =  0 ) )  | 
						
						
							| 58 | 
							
								51
							 | 
							breq2d | 
							⊢ ( 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 )  →  ( 0  <  ( 𝑝 ‘ 𝑡 )  ↔  0  <  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 ) ) )  | 
						
						
							| 59 | 
							
								50 58
							 | 
							ralbid | 
							⊢ ( 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 )  →  ( ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 )  ↔  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 ) ) )  | 
						
						
							| 60 | 
							
								55 57 59
							 | 
							3anbi123d | 
							⊢ ( 𝑝  =  ( 𝑡  ∈  𝑇  ↦  0 )  →  ( ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) )  ↔  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ∧  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ≤  1 )  ∧  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 ) ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							rspcev | 
							⊢ ( ( ( 𝑡  ∈  𝑇  ↦  0 )  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ∧  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 )  ≤  1 )  ∧  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( ( 𝑡  ∈  𝑇  ↦  0 ) ‘ 𝑡 ) ) )  →  ∃ 𝑝  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) )  | 
						
						
							| 62 | 
							
								19 37 45 47 61
							 | 
							syl13anc | 
							⊢ ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ∃ 𝑝  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) )  | 
						
						
							| 63 | 
							
								23
							 | 
							nfn | 
							⊢ Ⅎ 𝑡 ¬  ( 𝑇  ∖  𝑈 )  =  ∅  | 
						
						
							| 64 | 
							
								2 63
							 | 
							nfan | 
							⊢ Ⅎ 𝑡 ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  | 
						
						
							| 65 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  𝐽  ∈  Comp )  | 
						
						
							| 66 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  𝐴  ⊆  𝐶 )  | 
						
						
							| 67 | 
							
								8
							 | 
							3adant1r | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  | 
						
						
							| 68 | 
							
								9
							 | 
							3adant1r | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  | 
						
						
							| 69 | 
							
								10
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 )  | 
						
						
							| 70 | 
							
								11
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  ∧  ( 𝑟  ∈  𝑇  ∧  𝑡  ∈  𝑇  ∧  𝑟  ≠  𝑡 ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ‘ 𝑟 )  ≠  ( 𝑞 ‘ 𝑡 ) )  | 
						
						
							| 71 | 
							
								12
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  𝑈  ∈  𝐽 )  | 
						
						
							| 72 | 
							
								
							 | 
							neqne | 
							⊢ ( ¬  ( 𝑇  ∖  𝑈 )  =  ∅  →  ( 𝑇  ∖  𝑈 )  ≠  ∅ )  | 
						
						
							| 73 | 
							
								72
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ( 𝑇  ∖  𝑈 )  ≠  ∅ )  | 
						
						
							| 74 | 
							
								13
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  𝑍  ∈  𝑈 )  | 
						
						
							| 75 | 
							
								1 64 3 14 15 5 6 65 66 67 68 69 70 71 73 74
							 | 
							stoweidlem53 | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ∃ 𝑝  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) )  | 
						
						
							| 76 | 
							
								62 75
							 | 
							pm2.61dan | 
							⊢ ( 𝜑  →  ∃ 𝑝  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) )  |