Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem56.1 |
⊢ Ⅎ 𝑡 𝑈 |
2 |
|
stoweidlem56.2 |
⊢ Ⅎ 𝑡 𝜑 |
3 |
|
stoweidlem56.3 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
4 |
|
stoweidlem56.4 |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
5 |
|
stoweidlem56.5 |
⊢ 𝑇 = ∪ 𝐽 |
6 |
|
stoweidlem56.6 |
⊢ 𝐶 = ( 𝐽 Cn 𝐾 ) |
7 |
|
stoweidlem56.7 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
8 |
|
stoweidlem56.8 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
9 |
|
stoweidlem56.9 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
10 |
|
stoweidlem56.10 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑦 ) ∈ 𝐴 ) |
11 |
|
stoweidlem56.11 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ‘ 𝑟 ) ≠ ( 𝑞 ‘ 𝑡 ) ) |
12 |
|
stoweidlem56.12 |
⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) |
13 |
|
stoweidlem56.13 |
⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) |
14 |
|
eqid |
⊢ { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } = { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } |
15 |
|
eqid |
⊢ { 𝑤 ∈ 𝐽 ∣ ∃ ℎ ∈ { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } = { 𝑤 ∈ 𝐽 ∣ ∃ ℎ ∈ { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } |
16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
stoweidlem55 |
⊢ ( 𝜑 → ∃ 𝑝 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) |
17 |
|
df-rex |
⊢ ( ∃ 𝑝 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ↔ ∃ 𝑝 ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) |
18 |
16 17
|
sylib |
⊢ ( 𝜑 → ∃ 𝑝 ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) |
19 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) → 𝜑 ) |
20 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) → 𝑝 ∈ 𝐴 ) |
21 |
|
simprr3 |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) |
22 |
|
nfv |
⊢ Ⅎ 𝑡 𝑝 ∈ 𝐴 |
23 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) |
24 |
2 22 23
|
nf3an |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) |
25 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) → 𝐽 ∈ Comp ) |
26 |
7
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ 𝐶 ) |
27 |
26 6
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ ( 𝐽 Cn 𝐾 ) ) |
28 |
27
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) → 𝑝 ∈ ( 𝐽 Cn 𝐾 ) ) |
29 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) |
30 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) → 𝑈 ∈ 𝐽 ) |
31 |
1 24 3 5 25 28 29 30
|
stoweidlem28 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) → ∃ 𝑑 ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) |
32 |
19 20 21 31
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) → ∃ 𝑑 ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) |
33 |
|
simpr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) → 𝑑 ∈ ℝ+ ) |
34 |
|
simpr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) → 𝑑 < 1 ) |
35 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) → 𝑝 ∈ 𝐴 ) |
36 |
|
simprr1 |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ) |
38 |
|
simprr2 |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) → ( 𝑝 ‘ 𝑍 ) = 0 ) |
39 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) → ( 𝑝 ‘ 𝑍 ) = 0 ) |
40 |
|
simpr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) |
41 |
37 39 40
|
3jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) |
42 |
35 41
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) → ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) |
43 |
33 34 42
|
3jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) → ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) ) |
44 |
43
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) → ( ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) → ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) ) ) |
45 |
44
|
eximdv |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) → ( ∃ 𝑑 ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) → ∃ 𝑑 ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) ) ) |
46 |
32 45
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) ) → ∃ 𝑑 ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) ) |
47 |
46
|
ex |
⊢ ( 𝜑 → ( ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) → ∃ 𝑑 ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) ) ) |
48 |
47
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑝 ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑝 ‘ 𝑡 ) ) ) → ∃ 𝑝 ∃ 𝑑 ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) ) ) |
49 |
18 48
|
mpd |
⊢ ( 𝜑 → ∃ 𝑝 ∃ 𝑑 ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) ) |
50 |
|
nfv |
⊢ Ⅎ 𝑡 𝑑 ∈ ℝ+ |
51 |
|
nfv |
⊢ Ⅎ 𝑡 𝑑 < 1 |
52 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) |
53 |
|
nfv |
⊢ Ⅎ 𝑡 ( 𝑝 ‘ 𝑍 ) = 0 |
54 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) |
55 |
52 53 54
|
nf3an |
⊢ Ⅎ 𝑡 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) |
56 |
22 55
|
nfan |
⊢ Ⅎ 𝑡 ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) |
57 |
50 51 56
|
nf3an |
⊢ Ⅎ 𝑡 ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) |
58 |
2 57
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) ) |
59 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑝 |
60 |
|
eqid |
⊢ { 𝑡 ∈ 𝑇 ∣ ( 𝑝 ‘ 𝑡 ) < ( 𝑑 / 2 ) } = { 𝑡 ∈ 𝑇 ∣ ( 𝑝 ‘ 𝑡 ) < ( 𝑑 / 2 ) } |
61 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) ) → 𝐴 ⊆ 𝐶 ) |
62 |
8
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
63 |
9
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
64 |
10
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) ) ∧ 𝑦 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑦 ) ∈ 𝐴 ) |
65 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) ) → 𝑑 ∈ ℝ+ ) |
66 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) ) → 𝑑 < 1 ) |
67 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) ) → 𝑈 ∈ 𝐽 ) |
68 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) ) → 𝑍 ∈ 𝑈 ) |
69 |
|
simpr3l |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) ) → 𝑝 ∈ 𝐴 ) |
70 |
|
simp3r1 |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ) |
71 |
70
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) ) → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ) |
72 |
|
simp3r2 |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) → ( 𝑝 ‘ 𝑍 ) = 0 ) |
73 |
72
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) ) → ( 𝑝 ‘ 𝑍 ) = 0 ) |
74 |
|
simp3r3 |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) |
75 |
74
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) ) → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) |
76 |
1 58 59 3 60 5 6 61 62 63 64 65 66 67 68 69 71 73 75
|
stoweidlem52 |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) ) → ∃ 𝑣 ∈ 𝐽 ( ( 𝑍 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑈 ) ∧ ∀ 𝑒 ∈ ℝ+ ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑣 ( 𝑥 ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( 𝑥 ‘ 𝑡 ) ) ) ) |
77 |
76
|
ex |
⊢ ( 𝜑 → ( ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) → ∃ 𝑣 ∈ 𝐽 ( ( 𝑍 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑈 ) ∧ ∀ 𝑒 ∈ ℝ+ ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑣 ( 𝑥 ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( 𝑥 ‘ 𝑡 ) ) ) ) ) |
78 |
77
|
exlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑝 ∃ 𝑑 ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ( 𝑝 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑝 ‘ 𝑡 ) ∧ ( 𝑝 ‘ 𝑡 ) ≤ 1 ) ∧ ( 𝑝 ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑝 ‘ 𝑡 ) ) ) ) → ∃ 𝑣 ∈ 𝐽 ( ( 𝑍 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑈 ) ∧ ∀ 𝑒 ∈ ℝ+ ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑣 ( 𝑥 ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( 𝑥 ‘ 𝑡 ) ) ) ) ) |
79 |
49 78
|
mpd |
⊢ ( 𝜑 → ∃ 𝑣 ∈ 𝐽 ( ( 𝑍 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑈 ) ∧ ∀ 𝑒 ∈ ℝ+ ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑣 ( 𝑥 ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( 𝑥 ‘ 𝑡 ) ) ) ) |