| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							stoweidlem56.1 | 
							⊢ Ⅎ 𝑡 𝑈  | 
						
						
							| 2 | 
							
								
							 | 
							stoweidlem56.2 | 
							⊢ Ⅎ 𝑡 𝜑  | 
						
						
							| 3 | 
							
								
							 | 
							stoweidlem56.3 | 
							⊢ 𝐾  =  ( topGen ‘ ran  (,) )  | 
						
						
							| 4 | 
							
								
							 | 
							stoweidlem56.4 | 
							⊢ ( 𝜑  →  𝐽  ∈  Comp )  | 
						
						
							| 5 | 
							
								
							 | 
							stoweidlem56.5 | 
							⊢ 𝑇  =  ∪  𝐽  | 
						
						
							| 6 | 
							
								
							 | 
							stoweidlem56.6 | 
							⊢ 𝐶  =  ( 𝐽  Cn  𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							stoweidlem56.7 | 
							⊢ ( 𝜑  →  𝐴  ⊆  𝐶 )  | 
						
						
							| 8 | 
							
								
							 | 
							stoweidlem56.8 | 
							⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  | 
						
						
							| 9 | 
							
								
							 | 
							stoweidlem56.9 | 
							⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  | 
						
						
							| 10 | 
							
								
							 | 
							stoweidlem56.10 | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑦 )  ∈  𝐴 )  | 
						
						
							| 11 | 
							
								
							 | 
							stoweidlem56.11 | 
							⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑡  ∈  𝑇  ∧  𝑟  ≠  𝑡 ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ‘ 𝑟 )  ≠  ( 𝑞 ‘ 𝑡 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							stoweidlem56.12 | 
							⊢ ( 𝜑  →  𝑈  ∈  𝐽 )  | 
						
						
							| 13 | 
							
								
							 | 
							stoweidlem56.13 | 
							⊢ ( 𝜑  →  𝑍  ∈  𝑈 )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) }  =  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) }  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							⊢ { 𝑤  ∈  𝐽  ∣  ∃ ℎ  ∈  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) } 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  =  { 𝑤  ∈  𝐽  ∣  ∃ ℎ  ∈  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) } 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  | 
						
						
							| 16 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
							 | 
							stoweidlem55 | 
							⊢ ( 𝜑  →  ∃ 𝑝  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							df-rex | 
							⊢ ( ∃ 𝑝  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) )  ↔  ∃ 𝑝 ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							sylib | 
							⊢ ( 𝜑  →  ∃ 𝑝 ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  →  𝜑 )  | 
						
						
							| 20 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  →  𝑝  ∈  𝐴 )  | 
						
						
							| 21 | 
							
								
							 | 
							simprr3 | 
							⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑡 𝑝  ∈  𝐴  | 
						
						
							| 23 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 )  | 
						
						
							| 24 | 
							
								2 22 23
							 | 
							nf3an | 
							⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑝  ∈  𝐴  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) )  | 
						
						
							| 25 | 
							
								4
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐴  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) )  →  𝐽  ∈  Comp )  | 
						
						
							| 26 | 
							
								7
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐴 )  →  𝑝  ∈  𝐶 )  | 
						
						
							| 27 | 
							
								26 6
							 | 
							eleqtrdi | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐴 )  →  𝑝  ∈  ( 𝐽  Cn  𝐾 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							3adant3 | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐴  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) )  →  𝑝  ∈  ( 𝐽  Cn  𝐾 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐴  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) )  | 
						
						
							| 30 | 
							
								12
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐴  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) )  →  𝑈  ∈  𝐽 )  | 
						
						
							| 31 | 
							
								1 24 3 5 25 28 29 30
							 | 
							stoweidlem28 | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐴  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) )  →  ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  | 
						
						
							| 32 | 
							
								19 20 21 31
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simpr1 | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  →  𝑑  ∈  ℝ+ )  | 
						
						
							| 34 | 
							
								
							 | 
							simpr2 | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  →  𝑑  <  1 )  | 
						
						
							| 35 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  →  𝑝  ∈  𝐴 )  | 
						
						
							| 36 | 
							
								
							 | 
							simprr1 | 
							⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 ) )  | 
						
						
							| 38 | 
							
								
							 | 
							simprr2 | 
							⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ( 𝑝 ‘ 𝑍 )  =  0 )  | 
						
						
							| 39 | 
							
								38
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  →  ( 𝑝 ‘ 𝑍 )  =  0 )  | 
						
						
							| 40 | 
							
								
							 | 
							simpr3 | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) )  | 
						
						
							| 41 | 
							
								37 39 40
							 | 
							3jca | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  →  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  | 
						
						
							| 42 | 
							
								35 41
							 | 
							jca | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  →  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) )  | 
						
						
							| 43 | 
							
								33 34 42
							 | 
							3jca | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  →  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							ex | 
							⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ( ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) )  →  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							eximdv | 
							⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ( ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) )  →  ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) ) )  | 
						
						
							| 46 | 
							
								32 45
							 | 
							mpd | 
							⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							ex | 
							⊢ ( 𝜑  →  ( ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) )  →  ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							eximdv | 
							⊢ ( 𝜑  →  ( ∃ 𝑝 ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) )  →  ∃ 𝑝 ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) ) )  | 
						
						
							| 49 | 
							
								18 48
							 | 
							mpd | 
							⊢ ( 𝜑  →  ∃ 𝑝 ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  | 
						
						
							| 50 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑡 𝑑  ∈  ℝ+  | 
						
						
							| 51 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑡 𝑑  <  1  | 
						
						
							| 52 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  | 
						
						
							| 53 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑡 ( 𝑝 ‘ 𝑍 )  =  0  | 
						
						
							| 54 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 )  | 
						
						
							| 55 | 
							
								52 53 54
							 | 
							nf3an | 
							⊢ Ⅎ 𝑡 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) )  | 
						
						
							| 56 | 
							
								22 55
							 | 
							nfan | 
							⊢ Ⅎ 𝑡 ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) )  | 
						
						
							| 57 | 
							
								50 51 56
							 | 
							nf3an | 
							⊢ Ⅎ 𝑡 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) )  | 
						
						
							| 58 | 
							
								2 57
							 | 
							nfan | 
							⊢ Ⅎ 𝑡 ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  | 
						
						
							| 59 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑡 𝑝  | 
						
						
							| 60 | 
							
								
							 | 
							eqid | 
							⊢ { 𝑡  ∈  𝑇  ∣  ( 𝑝 ‘ 𝑡 )  <  ( 𝑑  /  2 ) }  =  { 𝑡  ∈  𝑇  ∣  ( 𝑝 ‘ 𝑡 )  <  ( 𝑑  /  2 ) }  | 
						
						
							| 61 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  →  𝐴  ⊆  𝐶 )  | 
						
						
							| 62 | 
							
								8
							 | 
							3adant1r | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  | 
						
						
							| 63 | 
							
								9
							 | 
							3adant1r | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  | 
						
						
							| 64 | 
							
								10
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  ∧  𝑦  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑦 )  ∈  𝐴 )  | 
						
						
							| 65 | 
							
								
							 | 
							simpr1 | 
							⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  →  𝑑  ∈  ℝ+ )  | 
						
						
							| 66 | 
							
								
							 | 
							simpr2 | 
							⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  →  𝑑  <  1 )  | 
						
						
							| 67 | 
							
								12
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  →  𝑈  ∈  𝐽 )  | 
						
						
							| 68 | 
							
								13
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  →  𝑍  ∈  𝑈 )  | 
						
						
							| 69 | 
							
								
							 | 
							simpr3l | 
							⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  →  𝑝  ∈  𝐴 )  | 
						
						
							| 70 | 
							
								
							 | 
							simp3r1 | 
							⊢ ( ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 ) )  | 
						
						
							| 72 | 
							
								
							 | 
							simp3r2 | 
							⊢ ( ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ( 𝑝 ‘ 𝑍 )  =  0 )  | 
						
						
							| 73 | 
							
								72
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  →  ( 𝑝 ‘ 𝑍 )  =  0 )  | 
						
						
							| 74 | 
							
								
							 | 
							simp3r3 | 
							⊢ ( ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) )  | 
						
						
							| 76 | 
							
								1 58 59 3 60 5 6 61 62 63 64 65 66 67 68 69 71 73 75
							 | 
							stoweidlem52 | 
							⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) ) )  →  ∃ 𝑣  ∈  𝐽 ( ( 𝑍  ∈  𝑣  ∧  𝑣  ⊆  𝑈 )  ∧  ∀ 𝑒  ∈  ℝ+ ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑣 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) ) ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							ex | 
							⊢ ( 𝜑  →  ( ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ∃ 𝑣  ∈  𝐽 ( ( 𝑍  ∈  𝑣  ∧  𝑣  ⊆  𝑈 )  ∧  ∀ 𝑒  ∈  ℝ+ ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑣 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							exlimdvv | 
							⊢ ( 𝜑  →  ( ∃ 𝑝 ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑝 ‘ 𝑡 ) ) ) )  →  ∃ 𝑣  ∈  𝐽 ( ( 𝑍  ∈  𝑣  ∧  𝑣  ⊆  𝑈 )  ∧  ∀ 𝑒  ∈  ℝ+ ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑣 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) )  | 
						
						
							| 79 | 
							
								49 78
							 | 
							mpd | 
							⊢ ( 𝜑  →  ∃ 𝑣  ∈  𝐽 ( ( 𝑍  ∈  𝑣  ∧  𝑣  ⊆  𝑈 )  ∧  ∀ 𝑒  ∈  ℝ+ ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑣 ( 𝑥 ‘ 𝑡 )  <  𝑒  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  −  𝑒 )  <  ( 𝑥 ‘ 𝑡 ) ) ) )  |