| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem57.1 |
⊢ Ⅎ 𝑡 𝐷 |
| 2 |
|
stoweidlem57.2 |
⊢ Ⅎ 𝑡 𝑈 |
| 3 |
|
stoweidlem57.3 |
⊢ Ⅎ 𝑡 𝜑 |
| 4 |
|
stoweidlem57.4 |
⊢ 𝑌 = { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } |
| 5 |
|
stoweidlem57.5 |
⊢ 𝑉 = { 𝑤 ∈ 𝐽 ∣ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) } |
| 6 |
|
stoweidlem57.6 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
| 7 |
|
stoweidlem57.7 |
⊢ 𝑇 = ∪ 𝐽 |
| 8 |
|
stoweidlem57.8 |
⊢ 𝐶 = ( 𝐽 Cn 𝐾 ) |
| 9 |
|
stoweidlem57.9 |
⊢ 𝑈 = ( 𝑇 ∖ 𝐵 ) |
| 10 |
|
stoweidlem57.10 |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
| 11 |
|
stoweidlem57.11 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
| 12 |
|
stoweidlem57.12 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 13 |
|
stoweidlem57.13 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 14 |
|
stoweidlem57.14 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑎 ) ∈ 𝐴 ) |
| 15 |
|
stoweidlem57.15 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ‘ 𝑟 ) ≠ ( 𝑞 ‘ 𝑡 ) ) |
| 16 |
|
stoweidlem57.16 |
⊢ ( 𝜑 → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) |
| 17 |
|
stoweidlem57.17 |
⊢ ( 𝜑 → 𝐷 ∈ ( Clsd ‘ 𝐽 ) ) |
| 18 |
|
stoweidlem57.18 |
⊢ ( 𝜑 → ( 𝐵 ∩ 𝐷 ) = ∅ ) |
| 19 |
|
stoweidlem57.19 |
⊢ ( 𝜑 → 𝐷 ≠ ∅ ) |
| 20 |
|
stoweidlem57.20 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 21 |
|
stoweidlem57.21 |
⊢ ( 𝜑 → 𝐸 < ( 1 / 3 ) ) |
| 22 |
1
|
nfcri |
⊢ Ⅎ 𝑡 𝑠 ∈ 𝐷 |
| 23 |
3 22
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑠 ∈ 𝐷 ) |
| 24 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐷 ) → 𝐽 ∈ Comp ) |
| 25 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐷 ) → 𝐴 ⊆ 𝐶 ) |
| 26 |
12
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐷 ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 27 |
13
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐷 ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 28 |
14
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐷 ) ∧ 𝑎 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑎 ) ∈ 𝐴 ) |
| 29 |
15
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐷 ) ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ‘ 𝑟 ) ≠ ( 𝑞 ‘ 𝑡 ) ) |
| 30 |
|
cmptop |
⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) |
| 31 |
7
|
iscld |
⊢ ( 𝐽 ∈ Top → ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝐵 ⊆ 𝑇 ∧ ( 𝑇 ∖ 𝐵 ) ∈ 𝐽 ) ) ) |
| 32 |
10 30 31
|
3syl |
⊢ ( 𝜑 → ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝐵 ⊆ 𝑇 ∧ ( 𝑇 ∖ 𝐵 ) ∈ 𝐽 ) ) ) |
| 33 |
16 32
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 ⊆ 𝑇 ∧ ( 𝑇 ∖ 𝐵 ) ∈ 𝐽 ) ) |
| 34 |
33
|
simprd |
⊢ ( 𝜑 → ( 𝑇 ∖ 𝐵 ) ∈ 𝐽 ) |
| 35 |
9 34
|
eqeltrid |
⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐷 ) → 𝑈 ∈ 𝐽 ) |
| 37 |
7
|
cldss |
⊢ ( 𝐷 ∈ ( Clsd ‘ 𝐽 ) → 𝐷 ⊆ 𝑇 ) |
| 38 |
17 37
|
syl |
⊢ ( 𝜑 → 𝐷 ⊆ 𝑇 ) |
| 39 |
38
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐷 ) → 𝑠 ∈ 𝑇 ) |
| 40 |
|
disjr |
⊢ ( ( 𝐵 ∩ 𝐷 ) = ∅ ↔ ∀ 𝑠 ∈ 𝐷 ¬ 𝑠 ∈ 𝐵 ) |
| 41 |
18 40
|
sylib |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝐷 ¬ 𝑠 ∈ 𝐵 ) |
| 42 |
41
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐷 ) → ¬ 𝑠 ∈ 𝐵 ) |
| 43 |
39 42
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐷 ) → 𝑠 ∈ ( 𝑇 ∖ 𝐵 ) ) |
| 44 |
43 9
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐷 ) → 𝑠 ∈ 𝑈 ) |
| 45 |
2 23 6 24 7 8 25 26 27 28 29 36 44
|
stoweidlem56 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐷 ) → ∃ 𝑤 ∈ 𝐽 ( ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) ∧ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) ) ) |
| 46 |
|
simpl |
⊢ ( ( 𝑤 ∈ 𝐽 ∧ ( ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) ∧ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) ) ) → 𝑤 ∈ 𝐽 ) |
| 47 |
|
simprll |
⊢ ( ( 𝑤 ∈ 𝐽 ∧ ( ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) ∧ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) ) ) → 𝑠 ∈ 𝑤 ) |
| 48 |
|
simprr |
⊢ ( ( 𝑤 ∈ 𝐽 ∧ ( ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) ∧ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) ) ) → ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) ) |
| 49 |
5
|
reqabi |
⊢ ( 𝑤 ∈ 𝑉 ↔ ( 𝑤 ∈ 𝐽 ∧ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) ) ) |
| 50 |
46 48 49
|
sylanbrc |
⊢ ( ( 𝑤 ∈ 𝐽 ∧ ( ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) ∧ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) ) ) → 𝑤 ∈ 𝑉 ) |
| 51 |
46 47 50
|
jca32 |
⊢ ( ( 𝑤 ∈ 𝐽 ∧ ( ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) ∧ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) ) ) → ( 𝑤 ∈ 𝐽 ∧ ( 𝑠 ∈ 𝑤 ∧ 𝑤 ∈ 𝑉 ) ) ) |
| 52 |
51
|
reximi2 |
⊢ ( ∃ 𝑤 ∈ 𝐽 ( ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) ∧ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) ) → ∃ 𝑤 ∈ 𝐽 ( 𝑠 ∈ 𝑤 ∧ 𝑤 ∈ 𝑉 ) ) |
| 53 |
|
rexex |
⊢ ( ∃ 𝑤 ∈ 𝐽 ( 𝑠 ∈ 𝑤 ∧ 𝑤 ∈ 𝑉 ) → ∃ 𝑤 ( 𝑠 ∈ 𝑤 ∧ 𝑤 ∈ 𝑉 ) ) |
| 54 |
45 52 53
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐷 ) → ∃ 𝑤 ( 𝑠 ∈ 𝑤 ∧ 𝑤 ∈ 𝑉 ) ) |
| 55 |
|
nfcv |
⊢ Ⅎ 𝑤 𝑠 |
| 56 |
|
nfrab1 |
⊢ Ⅎ 𝑤 { 𝑤 ∈ 𝐽 ∣ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) } |
| 57 |
5 56
|
nfcxfr |
⊢ Ⅎ 𝑤 𝑉 |
| 58 |
55 57
|
elunif |
⊢ ( 𝑠 ∈ ∪ 𝑉 ↔ ∃ 𝑤 ( 𝑠 ∈ 𝑤 ∧ 𝑤 ∈ 𝑉 ) ) |
| 59 |
54 58
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐷 ) → 𝑠 ∈ ∪ 𝑉 ) |
| 60 |
59
|
ex |
⊢ ( 𝜑 → ( 𝑠 ∈ 𝐷 → 𝑠 ∈ ∪ 𝑉 ) ) |
| 61 |
60
|
ssrdv |
⊢ ( 𝜑 → 𝐷 ⊆ ∪ 𝑉 ) |
| 62 |
|
cmpcld |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐽 ↾t 𝐷 ) ∈ Comp ) |
| 63 |
10 17 62
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ↾t 𝐷 ) ∈ Comp ) |
| 64 |
10 30
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 65 |
7
|
cmpsub |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐷 ⊆ 𝑇 ) → ( ( 𝐽 ↾t 𝐷 ) ∈ Comp ↔ ∀ 𝑘 ∈ 𝒫 𝐽 ( 𝐷 ⊆ ∪ 𝑘 → ∃ 𝑢 ∈ ( 𝒫 𝑘 ∩ Fin ) 𝐷 ⊆ ∪ 𝑢 ) ) ) |
| 66 |
64 38 65
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐽 ↾t 𝐷 ) ∈ Comp ↔ ∀ 𝑘 ∈ 𝒫 𝐽 ( 𝐷 ⊆ ∪ 𝑘 → ∃ 𝑢 ∈ ( 𝒫 𝑘 ∩ Fin ) 𝐷 ⊆ ∪ 𝑢 ) ) ) |
| 67 |
63 66
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝒫 𝐽 ( 𝐷 ⊆ ∪ 𝑘 → ∃ 𝑢 ∈ ( 𝒫 𝑘 ∩ Fin ) 𝐷 ⊆ ∪ 𝑢 ) ) |
| 68 |
|
ssrab2 |
⊢ { 𝑤 ∈ 𝐽 ∣ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) } ⊆ 𝐽 |
| 69 |
5 68
|
eqsstri |
⊢ 𝑉 ⊆ 𝐽 |
| 70 |
5 10
|
rabexd |
⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 71 |
|
elpwg |
⊢ ( 𝑉 ∈ V → ( 𝑉 ∈ 𝒫 𝐽 ↔ 𝑉 ⊆ 𝐽 ) ) |
| 72 |
70 71
|
syl |
⊢ ( 𝜑 → ( 𝑉 ∈ 𝒫 𝐽 ↔ 𝑉 ⊆ 𝐽 ) ) |
| 73 |
69 72
|
mpbiri |
⊢ ( 𝜑 → 𝑉 ∈ 𝒫 𝐽 ) |
| 74 |
|
unieq |
⊢ ( 𝑘 = 𝑉 → ∪ 𝑘 = ∪ 𝑉 ) |
| 75 |
74
|
sseq2d |
⊢ ( 𝑘 = 𝑉 → ( 𝐷 ⊆ ∪ 𝑘 ↔ 𝐷 ⊆ ∪ 𝑉 ) ) |
| 76 |
|
pweq |
⊢ ( 𝑘 = 𝑉 → 𝒫 𝑘 = 𝒫 𝑉 ) |
| 77 |
76
|
ineq1d |
⊢ ( 𝑘 = 𝑉 → ( 𝒫 𝑘 ∩ Fin ) = ( 𝒫 𝑉 ∩ Fin ) ) |
| 78 |
77
|
rexeqdv |
⊢ ( 𝑘 = 𝑉 → ( ∃ 𝑢 ∈ ( 𝒫 𝑘 ∩ Fin ) 𝐷 ⊆ ∪ 𝑢 ↔ ∃ 𝑢 ∈ ( 𝒫 𝑉 ∩ Fin ) 𝐷 ⊆ ∪ 𝑢 ) ) |
| 79 |
75 78
|
imbi12d |
⊢ ( 𝑘 = 𝑉 → ( ( 𝐷 ⊆ ∪ 𝑘 → ∃ 𝑢 ∈ ( 𝒫 𝑘 ∩ Fin ) 𝐷 ⊆ ∪ 𝑢 ) ↔ ( 𝐷 ⊆ ∪ 𝑉 → ∃ 𝑢 ∈ ( 𝒫 𝑉 ∩ Fin ) 𝐷 ⊆ ∪ 𝑢 ) ) ) |
| 80 |
79
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ 𝒫 𝐽 ( 𝐷 ⊆ ∪ 𝑘 → ∃ 𝑢 ∈ ( 𝒫 𝑘 ∩ Fin ) 𝐷 ⊆ ∪ 𝑢 ) ∧ 𝑉 ∈ 𝒫 𝐽 ) → ( 𝐷 ⊆ ∪ 𝑉 → ∃ 𝑢 ∈ ( 𝒫 𝑉 ∩ Fin ) 𝐷 ⊆ ∪ 𝑢 ) ) |
| 81 |
67 73 80
|
syl2anc |
⊢ ( 𝜑 → ( 𝐷 ⊆ ∪ 𝑉 → ∃ 𝑢 ∈ ( 𝒫 𝑉 ∩ Fin ) 𝐷 ⊆ ∪ 𝑢 ) ) |
| 82 |
61 81
|
mpd |
⊢ ( 𝜑 → ∃ 𝑢 ∈ ( 𝒫 𝑉 ∩ Fin ) 𝐷 ⊆ ∪ 𝑢 ) |
| 83 |
|
elinel1 |
⊢ ( 𝑢 ∈ ( 𝒫 𝑉 ∩ Fin ) → 𝑢 ∈ 𝒫 𝑉 ) |
| 84 |
|
elpwi |
⊢ ( 𝑢 ∈ 𝒫 𝑉 → 𝑢 ⊆ 𝑉 ) |
| 85 |
84
|
ssdifssd |
⊢ ( 𝑢 ∈ 𝒫 𝑉 → ( 𝑢 ∖ { ∅ } ) ⊆ 𝑉 ) |
| 86 |
|
vex |
⊢ 𝑢 ∈ V |
| 87 |
|
difexg |
⊢ ( 𝑢 ∈ V → ( 𝑢 ∖ { ∅ } ) ∈ V ) |
| 88 |
86 87
|
ax-mp |
⊢ ( 𝑢 ∖ { ∅ } ) ∈ V |
| 89 |
88
|
elpw |
⊢ ( ( 𝑢 ∖ { ∅ } ) ∈ 𝒫 𝑉 ↔ ( 𝑢 ∖ { ∅ } ) ⊆ 𝑉 ) |
| 90 |
85 89
|
sylibr |
⊢ ( 𝑢 ∈ 𝒫 𝑉 → ( 𝑢 ∖ { ∅ } ) ∈ 𝒫 𝑉 ) |
| 91 |
83 90
|
syl |
⊢ ( 𝑢 ∈ ( 𝒫 𝑉 ∩ Fin ) → ( 𝑢 ∖ { ∅ } ) ∈ 𝒫 𝑉 ) |
| 92 |
|
elinel2 |
⊢ ( 𝑢 ∈ ( 𝒫 𝑉 ∩ Fin ) → 𝑢 ∈ Fin ) |
| 93 |
|
diffi |
⊢ ( 𝑢 ∈ Fin → ( 𝑢 ∖ { ∅ } ) ∈ Fin ) |
| 94 |
92 93
|
syl |
⊢ ( 𝑢 ∈ ( 𝒫 𝑉 ∩ Fin ) → ( 𝑢 ∖ { ∅ } ) ∈ Fin ) |
| 95 |
91 94
|
elind |
⊢ ( 𝑢 ∈ ( 𝒫 𝑉 ∩ Fin ) → ( 𝑢 ∖ { ∅ } ) ∈ ( 𝒫 𝑉 ∩ Fin ) ) |
| 96 |
95
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ 𝐷 ⊆ ∪ 𝑢 ) → ( 𝑢 ∖ { ∅ } ) ∈ ( 𝒫 𝑉 ∩ Fin ) ) |
| 97 |
|
unidif0 |
⊢ ∪ ( 𝑢 ∖ { ∅ } ) = ∪ 𝑢 |
| 98 |
97
|
sseq2i |
⊢ ( 𝐷 ⊆ ∪ ( 𝑢 ∖ { ∅ } ) ↔ 𝐷 ⊆ ∪ 𝑢 ) |
| 99 |
98
|
biimpri |
⊢ ( 𝐷 ⊆ ∪ 𝑢 → 𝐷 ⊆ ∪ ( 𝑢 ∖ { ∅ } ) ) |
| 100 |
99
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ 𝐷 ⊆ ∪ 𝑢 ) → 𝐷 ⊆ ∪ ( 𝑢 ∖ { ∅ } ) ) |
| 101 |
|
eldifsni |
⊢ ( 𝑤 ∈ ( 𝑢 ∖ { ∅ } ) → 𝑤 ≠ ∅ ) |
| 102 |
101
|
rgen |
⊢ ∀ 𝑤 ∈ ( 𝑢 ∖ { ∅ } ) 𝑤 ≠ ∅ |
| 103 |
102
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ 𝐷 ⊆ ∪ 𝑢 ) → ∀ 𝑤 ∈ ( 𝑢 ∖ { ∅ } ) 𝑤 ≠ ∅ ) |
| 104 |
|
unieq |
⊢ ( 𝑟 = ( 𝑢 ∖ { ∅ } ) → ∪ 𝑟 = ∪ ( 𝑢 ∖ { ∅ } ) ) |
| 105 |
104
|
sseq2d |
⊢ ( 𝑟 = ( 𝑢 ∖ { ∅ } ) → ( 𝐷 ⊆ ∪ 𝑟 ↔ 𝐷 ⊆ ∪ ( 𝑢 ∖ { ∅ } ) ) ) |
| 106 |
|
raleq |
⊢ ( 𝑟 = ( 𝑢 ∖ { ∅ } ) → ( ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ ↔ ∀ 𝑤 ∈ ( 𝑢 ∖ { ∅ } ) 𝑤 ≠ ∅ ) ) |
| 107 |
105 106
|
anbi12d |
⊢ ( 𝑟 = ( 𝑢 ∖ { ∅ } ) → ( ( 𝐷 ⊆ ∪ 𝑟 ∧ ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ ) ↔ ( 𝐷 ⊆ ∪ ( 𝑢 ∖ { ∅ } ) ∧ ∀ 𝑤 ∈ ( 𝑢 ∖ { ∅ } ) 𝑤 ≠ ∅ ) ) ) |
| 108 |
107
|
rspcev |
⊢ ( ( ( 𝑢 ∖ { ∅ } ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ( 𝐷 ⊆ ∪ ( 𝑢 ∖ { ∅ } ) ∧ ∀ 𝑤 ∈ ( 𝑢 ∖ { ∅ } ) 𝑤 ≠ ∅ ) ) → ∃ 𝑟 ∈ ( 𝒫 𝑉 ∩ Fin ) ( 𝐷 ⊆ ∪ 𝑟 ∧ ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ ) ) |
| 109 |
96 100 103 108
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ 𝐷 ⊆ ∪ 𝑢 ) → ∃ 𝑟 ∈ ( 𝒫 𝑉 ∩ Fin ) ( 𝐷 ⊆ ∪ 𝑟 ∧ ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ ) ) |
| 110 |
109
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ( 𝒫 𝑉 ∩ Fin ) 𝐷 ⊆ ∪ 𝑢 → ∃ 𝑟 ∈ ( 𝒫 𝑉 ∩ Fin ) ( 𝐷 ⊆ ∪ 𝑟 ∧ ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ ) ) ) |
| 111 |
82 110
|
mpd |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ( 𝒫 𝑉 ∩ Fin ) ( 𝐷 ⊆ ∪ 𝑟 ∧ ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ ) ) |
| 112 |
|
nfv |
⊢ Ⅎ ℎ 𝜑 |
| 113 |
|
nfcv |
⊢ Ⅎ ℎ ℝ+ |
| 114 |
|
nfre1 |
⊢ Ⅎ ℎ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) |
| 115 |
113 114
|
nfralw |
⊢ Ⅎ ℎ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) |
| 116 |
|
nfcv |
⊢ Ⅎ ℎ 𝐽 |
| 117 |
115 116
|
nfrabw |
⊢ Ⅎ ℎ { 𝑤 ∈ 𝐽 ∣ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) } |
| 118 |
5 117
|
nfcxfr |
⊢ Ⅎ ℎ 𝑉 |
| 119 |
118
|
nfpw |
⊢ Ⅎ ℎ 𝒫 𝑉 |
| 120 |
|
nfcv |
⊢ Ⅎ ℎ Fin |
| 121 |
119 120
|
nfin |
⊢ Ⅎ ℎ ( 𝒫 𝑉 ∩ Fin ) |
| 122 |
121
|
nfcri |
⊢ Ⅎ ℎ 𝑟 ∈ ( 𝒫 𝑉 ∩ Fin ) |
| 123 |
|
nfv |
⊢ Ⅎ ℎ ( 𝐷 ⊆ ∪ 𝑟 ∧ ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ ) |
| 124 |
112 122 123
|
nf3an |
⊢ Ⅎ ℎ ( 𝜑 ∧ 𝑟 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ( 𝐷 ⊆ ∪ 𝑟 ∧ ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ ) ) |
| 125 |
|
nfcv |
⊢ Ⅎ 𝑡 ℝ+ |
| 126 |
|
nfcv |
⊢ Ⅎ 𝑡 𝐴 |
| 127 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) |
| 128 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 |
| 129 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) |
| 130 |
127 128 129
|
nf3an |
⊢ Ⅎ 𝑡 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) |
| 131 |
126 130
|
nfrexw |
⊢ Ⅎ 𝑡 ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) |
| 132 |
125 131
|
nfralw |
⊢ Ⅎ 𝑡 ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) |
| 133 |
|
nfcv |
⊢ Ⅎ 𝑡 𝐽 |
| 134 |
132 133
|
nfrabw |
⊢ Ⅎ 𝑡 { 𝑤 ∈ 𝐽 ∣ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) } |
| 135 |
5 134
|
nfcxfr |
⊢ Ⅎ 𝑡 𝑉 |
| 136 |
135
|
nfpw |
⊢ Ⅎ 𝑡 𝒫 𝑉 |
| 137 |
|
nfcv |
⊢ Ⅎ 𝑡 Fin |
| 138 |
136 137
|
nfin |
⊢ Ⅎ 𝑡 ( 𝒫 𝑉 ∩ Fin ) |
| 139 |
138
|
nfcri |
⊢ Ⅎ 𝑡 𝑟 ∈ ( 𝒫 𝑉 ∩ Fin ) |
| 140 |
|
nfcv |
⊢ Ⅎ 𝑡 ∪ 𝑟 |
| 141 |
1 140
|
nfss |
⊢ Ⅎ 𝑡 𝐷 ⊆ ∪ 𝑟 |
| 142 |
|
nfv |
⊢ Ⅎ 𝑡 ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ |
| 143 |
141 142
|
nfan |
⊢ Ⅎ 𝑡 ( 𝐷 ⊆ ∪ 𝑟 ∧ ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ ) |
| 144 |
3 139 143
|
nf3an |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑟 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ( 𝐷 ⊆ ∪ 𝑟 ∧ ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ ) ) |
| 145 |
|
nfv |
⊢ Ⅎ 𝑤 𝜑 |
| 146 |
57
|
nfpw |
⊢ Ⅎ 𝑤 𝒫 𝑉 |
| 147 |
|
nfcv |
⊢ Ⅎ 𝑤 Fin |
| 148 |
146 147
|
nfin |
⊢ Ⅎ 𝑤 ( 𝒫 𝑉 ∩ Fin ) |
| 149 |
148
|
nfcri |
⊢ Ⅎ 𝑤 𝑟 ∈ ( 𝒫 𝑉 ∩ Fin ) |
| 150 |
|
nfv |
⊢ Ⅎ 𝑤 𝐷 ⊆ ∪ 𝑟 |
| 151 |
|
nfra1 |
⊢ Ⅎ 𝑤 ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ |
| 152 |
150 151
|
nfan |
⊢ Ⅎ 𝑤 ( 𝐷 ⊆ ∪ 𝑟 ∧ ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ ) |
| 153 |
145 149 152
|
nf3an |
⊢ Ⅎ 𝑤 ( 𝜑 ∧ 𝑟 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ( 𝐷 ⊆ ∪ 𝑟 ∧ ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ ) ) |
| 154 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ( 𝐷 ⊆ ∪ 𝑟 ∧ ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ ) ) → 𝑟 ∈ ( 𝒫 𝑉 ∩ Fin ) ) |
| 155 |
|
simp3l |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ( 𝐷 ⊆ ∪ 𝑟 ∧ ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ ) ) → 𝐷 ⊆ ∪ 𝑟 ) |
| 156 |
19
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ( 𝐷 ⊆ ∪ 𝑟 ∧ ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ ) ) → 𝐷 ≠ ∅ ) |
| 157 |
20
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ( 𝐷 ⊆ ∪ 𝑟 ∧ ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ ) ) → 𝐸 ∈ ℝ+ ) |
| 158 |
33
|
simpld |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑇 ) |
| 159 |
158
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ( 𝐷 ⊆ ∪ 𝑟 ∧ ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ ) ) → 𝐵 ⊆ 𝑇 ) |
| 160 |
70
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ( 𝐷 ⊆ ∪ 𝑟 ∧ ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ ) ) → 𝑉 ∈ V ) |
| 161 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 162 |
6 161
|
eqeltri |
⊢ 𝐾 ∈ Top |
| 163 |
|
cnfex |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 Cn 𝐾 ) ∈ V ) |
| 164 |
64 162 163
|
sylancl |
⊢ ( 𝜑 → ( 𝐽 Cn 𝐾 ) ∈ V ) |
| 165 |
11 8
|
sseqtrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝐽 Cn 𝐾 ) ) |
| 166 |
164 165
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 167 |
166
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ( 𝐷 ⊆ ∪ 𝑟 ∧ ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ ) ) → 𝐴 ∈ V ) |
| 168 |
124 144 153 9 4 5 154 155 156 157 159 160 167
|
stoweidlem39 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ( 𝐷 ⊆ ∪ 𝑟 ∧ ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ ) ) → ∃ 𝑚 ∈ ℕ ∃ 𝑣 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) |
| 169 |
168
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ ( 𝒫 𝑉 ∩ Fin ) ( 𝐷 ⊆ ∪ 𝑟 ∧ ∀ 𝑤 ∈ 𝑟 𝑤 ≠ ∅ ) → ∃ 𝑚 ∈ ℕ ∃ 𝑣 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) ) |
| 170 |
111 169
|
mpd |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℕ ∃ 𝑣 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) |
| 171 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑚 ∈ ℕ ) |
| 172 |
|
nfv |
⊢ Ⅎ 𝑖 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 |
| 173 |
|
nfv |
⊢ Ⅎ 𝑖 𝐷 ⊆ ∪ ran 𝑣 |
| 174 |
|
nfv |
⊢ Ⅎ 𝑖 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 |
| 175 |
|
nfra1 |
⊢ Ⅎ 𝑖 ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 176 |
174 175
|
nfan |
⊢ Ⅎ 𝑖 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 177 |
176
|
nfex |
⊢ Ⅎ 𝑖 ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 178 |
172 173 177
|
nf3an |
⊢ Ⅎ 𝑖 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 179 |
171 178
|
nfan |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) |
| 180 |
|
nfv |
⊢ Ⅎ 𝑡 𝑚 ∈ ℕ |
| 181 |
3 180
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑚 ∈ ℕ ) |
| 182 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑣 |
| 183 |
|
nfcv |
⊢ Ⅎ 𝑡 ( 1 ... 𝑚 ) |
| 184 |
182 183 135
|
nff |
⊢ Ⅎ 𝑡 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 |
| 185 |
|
nfcv |
⊢ Ⅎ 𝑡 ∪ ran 𝑣 |
| 186 |
1 185
|
nfss |
⊢ Ⅎ 𝑡 𝐷 ⊆ ∪ ran 𝑣 |
| 187 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑦 |
| 188 |
127 126
|
nfrabw |
⊢ Ⅎ 𝑡 { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } |
| 189 |
4 188
|
nfcxfr |
⊢ Ⅎ 𝑡 𝑌 |
| 190 |
187 183 189
|
nff |
⊢ Ⅎ 𝑡 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 |
| 191 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) |
| 192 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) |
| 193 |
191 192
|
nfan |
⊢ Ⅎ 𝑡 ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 194 |
183 193
|
nfralw |
⊢ Ⅎ 𝑡 ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 195 |
190 194
|
nfan |
⊢ Ⅎ 𝑡 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 196 |
195
|
nfex |
⊢ Ⅎ 𝑡 ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 197 |
184 186 196
|
nf3an |
⊢ Ⅎ 𝑡 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 198 |
181 197
|
nfan |
⊢ Ⅎ 𝑡 ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) |
| 199 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑚 ∈ ℕ ) |
| 200 |
|
nfv |
⊢ Ⅎ 𝑦 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 |
| 201 |
|
nfv |
⊢ Ⅎ 𝑦 𝐷 ⊆ ∪ ran 𝑣 |
| 202 |
|
nfe1 |
⊢ Ⅎ 𝑦 ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 203 |
200 201 202
|
nf3an |
⊢ Ⅎ 𝑦 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 204 |
199 203
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) |
| 205 |
|
nfv |
⊢ Ⅎ 𝑤 ( 𝜑 ∧ 𝑚 ∈ ℕ ) |
| 206 |
|
nfcv |
⊢ Ⅎ 𝑤 𝑣 |
| 207 |
|
nfcv |
⊢ Ⅎ 𝑤 ( 1 ... 𝑚 ) |
| 208 |
206 207 57
|
nff |
⊢ Ⅎ 𝑤 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 |
| 209 |
|
nfv |
⊢ Ⅎ 𝑤 𝐷 ⊆ ∪ ran 𝑣 |
| 210 |
|
nfv |
⊢ Ⅎ 𝑤 ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 211 |
208 209 210
|
nf3an |
⊢ Ⅎ 𝑤 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 212 |
205 211
|
nfan |
⊢ Ⅎ 𝑤 ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) |
| 213 |
|
eqid |
⊢ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } = { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } |
| 214 |
|
eqid |
⊢ ( 𝑓 ∈ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } , 𝑔 ∈ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } ↦ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ) = ( 𝑓 ∈ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } , 𝑔 ∈ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } ↦ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 215 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 216 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ ( seq 1 ( · , ( ( 𝑡 ∈ 𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ‘ 𝑚 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( seq 1 ( · , ( ( 𝑡 ∈ 𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ‘ 𝑚 ) ) |
| 217 |
|
simp1ll |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → 𝜑 ) |
| 218 |
217 13
|
syld3an1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 219 |
11
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 ∈ 𝐶 ) |
| 220 |
6 7 8 219
|
fcnre |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
| 221 |
220
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
| 222 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) → 𝑚 ∈ ℕ ) |
| 223 |
|
simpr1 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) → 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ) |
| 224 |
7
|
cldss |
⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → 𝐵 ⊆ 𝑇 ) |
| 225 |
16 224
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑇 ) |
| 226 |
225
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) → 𝐵 ⊆ 𝑇 ) |
| 227 |
|
simpr2 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) → 𝐷 ⊆ ∪ ran 𝑣 ) |
| 228 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) → 𝐷 ⊆ 𝑇 ) |
| 229 |
|
feq3 |
⊢ ( 𝑌 = { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } → ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ↔ 𝑦 : ( 1 ... 𝑚 ) ⟶ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } ) ) |
| 230 |
4 229
|
ax-mp |
⊢ ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ↔ 𝑦 : ( 1 ... 𝑚 ) ⟶ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } ) |
| 231 |
230
|
biimpi |
⊢ ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 → 𝑦 : ( 1 ... 𝑚 ) ⟶ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } ) |
| 232 |
231
|
anim1i |
⊢ ( ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) → ( 𝑦 : ( 1 ... 𝑚 ) ⟶ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 233 |
232
|
eximi |
⊢ ( ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) → ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 234 |
233
|
3ad2ant3 |
⊢ ( ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 235 |
234
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) → ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 236 |
10
|
uniexd |
⊢ ( 𝜑 → ∪ 𝐽 ∈ V ) |
| 237 |
7 236
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
| 238 |
237
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) → 𝑇 ∈ V ) |
| 239 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) → 𝐸 ∈ ℝ+ ) |
| 240 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) → 𝐸 < ( 1 / 3 ) ) |
| 241 |
179 198 204 212 7 213 214 215 216 5 218 221 222 223 226 227 228 235 238 239 240
|
stoweidlem54 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ) ) |
| 242 |
241
|
ex |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ) ) ) |
| 243 |
242
|
exlimdv |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∃ 𝑣 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ) ) ) |
| 244 |
243
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℕ ∃ 𝑣 ( 𝑣 : ( 1 ... 𝑚 ) ⟶ 𝑉 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃ 𝑦 ( 𝑦 : ( 1 ... 𝑚 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑚 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑚 ) ) < ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ) ) ) |
| 245 |
170 244
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ) ) |