Metamath Proof Explorer


Theorem stoweidlem58

Description: This theorem proves Lemma 2 in BrosowskiDeutsh p. 91. Here D is used to represent the set A of Lemma 2, because here the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem58.1 𝑡 𝐷
stoweidlem58.2 𝑡 𝑈
stoweidlem58.3 𝑡 𝜑
stoweidlem58.4 𝐾 = ( topGen ‘ ran (,) )
stoweidlem58.5 𝑇 = 𝐽
stoweidlem58.6 𝐶 = ( 𝐽 Cn 𝐾 )
stoweidlem58.7 ( 𝜑𝐽 ∈ Comp )
stoweidlem58.8 ( 𝜑𝐴𝐶 )
stoweidlem58.9 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) + ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
stoweidlem58.10 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
stoweidlem58.11 ( ( 𝜑𝑎 ∈ ℝ ) → ( 𝑡𝑇𝑎 ) ∈ 𝐴 )
stoweidlem58.12 ( ( 𝜑 ∧ ( 𝑟𝑇𝑡𝑇𝑟𝑡 ) ) → ∃ 𝑞𝐴 ( 𝑞𝑟 ) ≠ ( 𝑞𝑡 ) )
stoweidlem58.13 ( 𝜑𝐵 ∈ ( Clsd ‘ 𝐽 ) )
stoweidlem58.14 ( 𝜑𝐷 ∈ ( Clsd ‘ 𝐽 ) )
stoweidlem58.15 ( 𝜑 → ( 𝐵𝐷 ) = ∅ )
stoweidlem58.16 𝑈 = ( 𝑇𝐵 )
stoweidlem58.17 ( 𝜑𝐸 ∈ ℝ+ )
stoweidlem58.18 ( 𝜑𝐸 < ( 1 / 3 ) )
Assertion stoweidlem58 ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ) )

Proof

Step Hyp Ref Expression
1 stoweidlem58.1 𝑡 𝐷
2 stoweidlem58.2 𝑡 𝑈
3 stoweidlem58.3 𝑡 𝜑
4 stoweidlem58.4 𝐾 = ( topGen ‘ ran (,) )
5 stoweidlem58.5 𝑇 = 𝐽
6 stoweidlem58.6 𝐶 = ( 𝐽 Cn 𝐾 )
7 stoweidlem58.7 ( 𝜑𝐽 ∈ Comp )
8 stoweidlem58.8 ( 𝜑𝐴𝐶 )
9 stoweidlem58.9 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) + ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
10 stoweidlem58.10 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
11 stoweidlem58.11 ( ( 𝜑𝑎 ∈ ℝ ) → ( 𝑡𝑇𝑎 ) ∈ 𝐴 )
12 stoweidlem58.12 ( ( 𝜑 ∧ ( 𝑟𝑇𝑡𝑇𝑟𝑡 ) ) → ∃ 𝑞𝐴 ( 𝑞𝑟 ) ≠ ( 𝑞𝑡 ) )
13 stoweidlem58.13 ( 𝜑𝐵 ∈ ( Clsd ‘ 𝐽 ) )
14 stoweidlem58.14 ( 𝜑𝐷 ∈ ( Clsd ‘ 𝐽 ) )
15 stoweidlem58.15 ( 𝜑 → ( 𝐵𝐷 ) = ∅ )
16 stoweidlem58.16 𝑈 = ( 𝑇𝐵 )
17 stoweidlem58.17 ( 𝜑𝐸 ∈ ℝ+ )
18 stoweidlem58.18 ( 𝜑𝐸 < ( 1 / 3 ) )
19 1 nfeq1 𝑡 𝐷 = ∅
20 3 19 nfan 𝑡 ( 𝜑𝐷 = ∅ )
21 eqid ( 𝑡𝑇 ↦ 1 ) = ( 𝑡𝑇 ↦ 1 )
22 11 adantlr ( ( ( 𝜑𝐷 = ∅ ) ∧ 𝑎 ∈ ℝ ) → ( 𝑡𝑇𝑎 ) ∈ 𝐴 )
23 13 adantr ( ( 𝜑𝐷 = ∅ ) → 𝐵 ∈ ( Clsd ‘ 𝐽 ) )
24 17 adantr ( ( 𝜑𝐷 = ∅ ) → 𝐸 ∈ ℝ+ )
25 simpr ( ( 𝜑𝐷 = ∅ ) → 𝐷 = ∅ )
26 1 20 21 5 22 23 24 25 stoweidlem18 ( ( 𝜑𝐷 = ∅ ) → ∃ 𝑥𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ) )
27 nfcv 𝑡
28 1 27 nfne 𝑡 𝐷 ≠ ∅
29 3 28 nfan 𝑡 ( 𝜑𝐷 ≠ ∅ )
30 eqid { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) } = { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) }
31 eqid { 𝑤𝐽 ∣ ∀ 𝑒 ∈ ℝ+𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − 𝑒 ) < ( 𝑡 ) ) } = { 𝑤𝐽 ∣ ∀ 𝑒 ∈ ℝ+𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − 𝑒 ) < ( 𝑡 ) ) }
32 7 adantr ( ( 𝜑𝐷 ≠ ∅ ) → 𝐽 ∈ Comp )
33 8 adantr ( ( 𝜑𝐷 ≠ ∅ ) → 𝐴𝐶 )
34 9 3adant1r ( ( ( 𝜑𝐷 ≠ ∅ ) ∧ 𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) + ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
35 10 3adant1r ( ( ( 𝜑𝐷 ≠ ∅ ) ∧ 𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
36 11 adantlr ( ( ( 𝜑𝐷 ≠ ∅ ) ∧ 𝑎 ∈ ℝ ) → ( 𝑡𝑇𝑎 ) ∈ 𝐴 )
37 12 adantlr ( ( ( 𝜑𝐷 ≠ ∅ ) ∧ ( 𝑟𝑇𝑡𝑇𝑟𝑡 ) ) → ∃ 𝑞𝐴 ( 𝑞𝑟 ) ≠ ( 𝑞𝑡 ) )
38 13 adantr ( ( 𝜑𝐷 ≠ ∅ ) → 𝐵 ∈ ( Clsd ‘ 𝐽 ) )
39 14 adantr ( ( 𝜑𝐷 ≠ ∅ ) → 𝐷 ∈ ( Clsd ‘ 𝐽 ) )
40 15 adantr ( ( 𝜑𝐷 ≠ ∅ ) → ( 𝐵𝐷 ) = ∅ )
41 simpr ( ( 𝜑𝐷 ≠ ∅ ) → 𝐷 ≠ ∅ )
42 17 adantr ( ( 𝜑𝐷 ≠ ∅ ) → 𝐸 ∈ ℝ+ )
43 18 adantr ( ( 𝜑𝐷 ≠ ∅ ) → 𝐸 < ( 1 / 3 ) )
44 1 2 29 30 31 4 5 6 16 32 33 34 35 36 37 38 39 40 41 42 43 stoweidlem57 ( ( 𝜑𝐷 ≠ ∅ ) → ∃ 𝑥𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ) )
45 26 44 pm2.61dane ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ) )