Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem58.1 |
⊢ Ⅎ 𝑡 𝐷 |
2 |
|
stoweidlem58.2 |
⊢ Ⅎ 𝑡 𝑈 |
3 |
|
stoweidlem58.3 |
⊢ Ⅎ 𝑡 𝜑 |
4 |
|
stoweidlem58.4 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
5 |
|
stoweidlem58.5 |
⊢ 𝑇 = ∪ 𝐽 |
6 |
|
stoweidlem58.6 |
⊢ 𝐶 = ( 𝐽 Cn 𝐾 ) |
7 |
|
stoweidlem58.7 |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
8 |
|
stoweidlem58.8 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
9 |
|
stoweidlem58.9 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
10 |
|
stoweidlem58.10 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
11 |
|
stoweidlem58.11 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑎 ) ∈ 𝐴 ) |
12 |
|
stoweidlem58.12 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ‘ 𝑟 ) ≠ ( 𝑞 ‘ 𝑡 ) ) |
13 |
|
stoweidlem58.13 |
⊢ ( 𝜑 → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) |
14 |
|
stoweidlem58.14 |
⊢ ( 𝜑 → 𝐷 ∈ ( Clsd ‘ 𝐽 ) ) |
15 |
|
stoweidlem58.15 |
⊢ ( 𝜑 → ( 𝐵 ∩ 𝐷 ) = ∅ ) |
16 |
|
stoweidlem58.16 |
⊢ 𝑈 = ( 𝑇 ∖ 𝐵 ) |
17 |
|
stoweidlem58.17 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
18 |
|
stoweidlem58.18 |
⊢ ( 𝜑 → 𝐸 < ( 1 / 3 ) ) |
19 |
1
|
nfeq1 |
⊢ Ⅎ 𝑡 𝐷 = ∅ |
20 |
3 19
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝐷 = ∅ ) |
21 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ 1 ) = ( 𝑡 ∈ 𝑇 ↦ 1 ) |
22 |
11
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐷 = ∅ ) ∧ 𝑎 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑎 ) ∈ 𝐴 ) |
23 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 = ∅ ) → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) |
24 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 = ∅ ) → 𝐸 ∈ ℝ+ ) |
25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐷 = ∅ ) → 𝐷 = ∅ ) |
26 |
1 20 21 5 22 23 24 25
|
stoweidlem18 |
⊢ ( ( 𝜑 ∧ 𝐷 = ∅ ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ) ) |
27 |
|
nfcv |
⊢ Ⅎ 𝑡 ∅ |
28 |
1 27
|
nfne |
⊢ Ⅎ 𝑡 𝐷 ≠ ∅ |
29 |
3 28
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝐷 ≠ ∅ ) |
30 |
|
eqid |
⊢ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } = { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } |
31 |
|
eqid |
⊢ { 𝑤 ∈ 𝐽 ∣ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) } = { 𝑤 ∈ 𝐽 ∣ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) } |
32 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ ∅ ) → 𝐽 ∈ Comp ) |
33 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ ∅ ) → 𝐴 ⊆ 𝐶 ) |
34 |
9
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝐷 ≠ ∅ ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
35 |
10
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝐷 ≠ ∅ ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
36 |
11
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐷 ≠ ∅ ) ∧ 𝑎 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑎 ) ∈ 𝐴 ) |
37 |
12
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐷 ≠ ∅ ) ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ‘ 𝑟 ) ≠ ( 𝑞 ‘ 𝑡 ) ) |
38 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ ∅ ) → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) |
39 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ ∅ ) → 𝐷 ∈ ( Clsd ‘ 𝐽 ) ) |
40 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ ∅ ) → ( 𝐵 ∩ 𝐷 ) = ∅ ) |
41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ ∅ ) → 𝐷 ≠ ∅ ) |
42 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ ∅ ) → 𝐸 ∈ ℝ+ ) |
43 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ ∅ ) → 𝐸 < ( 1 / 3 ) ) |
44 |
1 2 29 30 31 4 5 6 16 32 33 34 35 36 37 38 39 40 41 42 43
|
stoweidlem57 |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ) ) |
45 |
26 44
|
pm2.61dane |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ) ) |