Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem6.1 |
⊢ Ⅎ 𝑡 𝑓 = 𝐹 |
2 |
|
stoweidlem6.2 |
⊢ Ⅎ 𝑡 𝑔 = 𝐺 |
3 |
|
stoweidlem6.3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
4 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ) → 𝐺 ∈ 𝐴 ) |
5 |
|
eleq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ∈ 𝐴 ↔ 𝐺 ∈ 𝐴 ) ) |
6 |
5
|
3anbi3d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ) ) ) |
7 |
|
fveq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ 𝑡 ) = ( 𝐺 ‘ 𝑡 ) ) |
8 |
7
|
oveq2d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝐹 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) = ( ( 𝐹 ‘ 𝑡 ) · ( 𝐺 ‘ 𝑡 ) ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) = ( ( 𝐹 ‘ 𝑡 ) · ( 𝐺 ‘ 𝑡 ) ) ) |
10 |
2 9
|
mpteq2da |
⊢ ( 𝑔 = 𝐺 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) · ( 𝐺 ‘ 𝑡 ) ) ) ) |
11 |
10
|
eleq1d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) · ( 𝐺 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
12 |
6 11
|
imbi12d |
⊢ ( 𝑔 = 𝐺 → ( ( ( 𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) · ( 𝐺 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
13 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → 𝐹 ∈ 𝐴 ) |
14 |
|
eleq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ∈ 𝐴 ↔ 𝐹 ∈ 𝐴 ) ) |
15 |
14
|
3anbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) ) ) |
16 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑡 ) ) |
17 |
16
|
oveq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) = ( ( 𝐹 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) = ( ( 𝐹 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) |
19 |
1 18
|
mpteq2da |
⊢ ( 𝑓 = 𝐹 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ) |
20 |
19
|
eleq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
21 |
15 20
|
imbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
22 |
21 3
|
vtoclg |
⊢ ( 𝐹 ∈ 𝐴 → ( ( 𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
23 |
13 22
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
24 |
12 23
|
vtoclg |
⊢ ( 𝐺 ∈ 𝐴 → ( ( 𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) · ( 𝐺 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
25 |
4 24
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) · ( 𝐺 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |