Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem60.1 |
⊢ Ⅎ 𝑡 𝐹 |
2 |
|
stoweidlem60.2 |
⊢ Ⅎ 𝑡 𝜑 |
3 |
|
stoweidlem60.3 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
4 |
|
stoweidlem60.4 |
⊢ 𝑇 = ∪ 𝐽 |
5 |
|
stoweidlem60.5 |
⊢ 𝐶 = ( 𝐽 Cn 𝐾 ) |
6 |
|
stoweidlem60.6 |
⊢ 𝐷 = ( 𝑗 ∈ ( 0 ... 𝑛 ) ↦ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) } ) |
7 |
|
stoweidlem60.7 |
⊢ 𝐵 = ( 𝑗 ∈ ( 0 ... 𝑛 ) ↦ { 𝑡 ∈ 𝑇 ∣ ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ≤ ( 𝐹 ‘ 𝑡 ) } ) |
8 |
|
stoweidlem60.8 |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
9 |
|
stoweidlem60.9 |
⊢ ( 𝜑 → 𝑇 ≠ ∅ ) |
10 |
|
stoweidlem60.10 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
11 |
|
stoweidlem60.11 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
12 |
|
stoweidlem60.12 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
13 |
|
stoweidlem60.13 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑦 ) ∈ 𝐴 ) |
14 |
|
stoweidlem60.14 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ‘ 𝑟 ) ≠ ( 𝑞 ‘ 𝑡 ) ) |
15 |
|
stoweidlem60.15 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐶 ) |
16 |
|
stoweidlem60.16 |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 0 ≤ ( 𝐹 ‘ 𝑡 ) ) |
17 |
|
stoweidlem60.17 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
18 |
|
stoweidlem60.18 |
⊢ ( 𝜑 → 𝐸 < ( 1 / 3 ) ) |
19 |
|
nnre |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℝ ) |
21 |
17
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐸 ∈ ℝ ) |
23 |
17
|
rpne0d |
⊢ ( 𝜑 → 𝐸 ≠ 0 ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐸 ≠ 0 ) |
25 |
20 22 24
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 / 𝐸 ) ∈ ℝ ) |
26 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 1 ∈ ℝ ) |
27 |
25 26
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 / 𝐸 ) + 1 ) ∈ ℝ ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) → ( ( 𝑚 / 𝐸 ) + 1 ) ∈ ℝ ) |
29 |
|
arch |
⊢ ( ( ( 𝑚 / 𝐸 ) + 1 ) ∈ ℝ → ∃ 𝑛 ∈ ℕ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) |
30 |
28 29
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) → ∃ 𝑛 ∈ ℕ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) |
31 |
|
nfv |
⊢ Ⅎ 𝑡 𝑚 ∈ ℕ |
32 |
2 31
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑚 ∈ ℕ ) |
33 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 |
34 |
32 33
|
nfan |
⊢ Ⅎ 𝑡 ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) |
35 |
|
nfv |
⊢ Ⅎ 𝑡 𝑛 ∈ ℕ |
36 |
34 35
|
nfan |
⊢ Ⅎ 𝑡 ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) ∧ 𝑛 ∈ ℕ ) |
37 |
|
nfv |
⊢ Ⅎ 𝑡 ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 |
38 |
36 37
|
nfan |
⊢ Ⅎ 𝑡 ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) |
39 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) ∧ 𝑡 ∈ 𝑇 ) → 𝜑 ) |
40 |
3 4 5 15
|
fcnre |
⊢ ( 𝜑 → 𝐹 : 𝑇 ⟶ ℝ ) |
41 |
40
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) |
42 |
39 41
|
sylancom |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) |
43 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑚 ∈ ℕ ) |
44 |
43
|
nnred |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑚 ∈ ℝ ) |
45 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑛 ∈ ℕ ) |
46 |
45
|
nnred |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑛 ∈ ℝ ) |
47 |
|
1red |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) ∧ 𝑡 ∈ 𝑇 ) → 1 ∈ ℝ ) |
48 |
46 47
|
resubcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑛 − 1 ) ∈ ℝ ) |
49 |
39 21
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) ∧ 𝑡 ∈ 𝑇 ) → 𝐸 ∈ ℝ ) |
50 |
48 49
|
remulcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑛 − 1 ) · 𝐸 ) ∈ ℝ ) |
51 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) → ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) |
52 |
51
|
r19.21bi |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) < 𝑚 ) |
53 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) |
54 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) → ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) |
55 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) → 𝜑 ) |
56 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) → 𝑚 ∈ ℕ ) |
57 |
55 56 25
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) → ( 𝑚 / 𝐸 ) ∈ ℝ ) |
58 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) → 1 ∈ ℝ ) |
59 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) → 𝑛 ∈ ℕ ) |
60 |
59
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) → 𝑛 ∈ ℝ ) |
61 |
57 58 60
|
ltaddsubd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) → ( ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ↔ ( 𝑚 / 𝐸 ) < ( 𝑛 − 1 ) ) ) |
62 |
54 61
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) → ( 𝑚 / 𝐸 ) < ( 𝑛 − 1 ) ) |
63 |
19
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → 𝑚 ∈ ℝ ) |
64 |
63
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) → 𝑚 ∈ ℝ ) |
65 |
60 58
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) → ( 𝑛 − 1 ) ∈ ℝ ) |
66 |
21
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → 𝐸 ∈ ℝ ) |
67 |
66
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) → 𝐸 ∈ ℝ ) |
68 |
17
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝐸 ) |
69 |
55 68
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) → 0 < 𝐸 ) |
70 |
|
ltdivmul2 |
⊢ ( ( 𝑚 ∈ ℝ ∧ ( 𝑛 − 1 ) ∈ ℝ ∧ ( 𝐸 ∈ ℝ ∧ 0 < 𝐸 ) ) → ( ( 𝑚 / 𝐸 ) < ( 𝑛 − 1 ) ↔ 𝑚 < ( ( 𝑛 − 1 ) · 𝐸 ) ) ) |
71 |
64 65 67 69 70
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) → ( ( 𝑚 / 𝐸 ) < ( 𝑛 − 1 ) ↔ 𝑚 < ( ( 𝑛 − 1 ) · 𝐸 ) ) ) |
72 |
62 71
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) → 𝑚 < ( ( 𝑛 − 1 ) · 𝐸 ) ) |
73 |
39 43 45 53 72
|
syl31anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑚 < ( ( 𝑛 − 1 ) · 𝐸 ) ) |
74 |
42 44 50 52 73
|
lttrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) |
75 |
74
|
ex |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) → ( 𝑡 ∈ 𝑇 → ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ) |
76 |
38 75
|
ralrimi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 ) → ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) |
77 |
76
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 → ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ) |
78 |
77
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) → ( ∃ 𝑛 ∈ ℕ ( ( 𝑚 / 𝐸 ) + 1 ) < 𝑛 → ∃ 𝑛 ∈ ℕ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ) |
79 |
30 78
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) |
80 |
1 2 3 8 4 9 5 15
|
rfcnnnub |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℕ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑚 ) |
81 |
79 80
|
r19.29a |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) |
82 |
|
df-rex |
⊢ ( ∃ 𝑛 ∈ ℕ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ↔ ∃ 𝑛 ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ) |
83 |
81 82
|
sylib |
⊢ ( 𝜑 → ∃ 𝑛 ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ) |
84 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ) → ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ) |
85 |
2 35
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑛 ∈ ℕ ) |
86 |
|
eqid |
⊢ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑦 ‘ 𝑡 ) ∧ ( 𝑦 ‘ 𝑡 ) ≤ 1 ) } = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑦 ‘ 𝑡 ) ∧ ( 𝑦 ‘ 𝑡 ) ≤ 1 ) } |
87 |
|
eqid |
⊢ ( 𝑗 ∈ ( 0 ... 𝑛 ) ↦ { 𝑦 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑦 ‘ 𝑡 ) ∧ ( 𝑦 ‘ 𝑡 ) ≤ 1 ) } ∣ ( ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( 𝑦 ‘ 𝑡 ) ) } ) = ( 𝑗 ∈ ( 0 ... 𝑛 ) ↦ { 𝑦 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑦 ‘ 𝑡 ) ∧ ( 𝑦 ‘ 𝑡 ) ≤ 1 ) } ∣ ( ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( 𝑦 ‘ 𝑡 ) ) } ) |
88 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐽 ∈ Comp ) |
89 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ 𝐶 ) |
90 |
11
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
91 |
12
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
92 |
13
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑦 ) ∈ 𝐴 ) |
93 |
14
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ‘ 𝑟 ) ≠ ( 𝑞 ‘ 𝑡 ) ) |
94 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐹 ∈ 𝐶 ) |
95 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐸 ∈ ℝ+ ) |
96 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐸 < ( 1 / 3 ) ) |
97 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
98 |
1 85 3 4 5 6 7 86 87 88 89 90 91 92 93 94 95 96 97
|
stoweidlem59 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∃ 𝑥 ( 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) |
99 |
98
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ) → ∃ 𝑥 ( 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) |
100 |
|
19.42v |
⊢ ( ∃ 𝑥 ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ ( 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ↔ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ ∃ 𝑥 ( 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ) |
101 |
84 99 100
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ) → ∃ 𝑥 ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ ( 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ) |
102 |
|
3anass |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ↔ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ ( 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ) |
103 |
102
|
exbii |
⊢ ( ∃ 𝑥 ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ↔ ∃ 𝑥 ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ ( 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ) |
104 |
101 103
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ) → ∃ 𝑥 ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) |
105 |
104
|
ex |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) → ∃ 𝑥 ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ) |
106 |
105
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑛 ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) → ∃ 𝑛 ∃ 𝑥 ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ) |
107 |
83 106
|
mpd |
⊢ ( 𝜑 → ∃ 𝑛 ∃ 𝑥 ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) |
108 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) → 𝜑 ) |
109 |
|
simpr1l |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) → 𝑛 ∈ ℕ ) |
110 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) → 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ) |
111 |
|
nfv |
⊢ Ⅎ 𝑡 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 |
112 |
2 35 111
|
nf3an |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ) |
113 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ) → 𝑛 ∈ ℕ ) |
114 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ) → 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ) |
115 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ) → 𝜑 ) |
116 |
115 11
|
syl3an1 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
117 |
115 12
|
syl3an1 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
118 |
13
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑦 ) ∈ 𝐴 ) |
119 |
17
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ) → 𝐸 ∈ ℝ+ ) |
120 |
119
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ) → 𝐸 ∈ ℝ ) |
121 |
10
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 ∈ 𝐶 ) |
122 |
3 4 5 121
|
fcnre |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
123 |
122
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ) ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
124 |
112 113 114 116 117 118 120 123
|
stoweidlem17 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
125 |
108 109 110 124
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
126 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
127 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) |
128 |
|
nfv |
⊢ Ⅎ 𝑗 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 |
129 |
|
nfra1 |
⊢ Ⅎ 𝑗 ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) |
130 |
127 128 129
|
nf3an |
⊢ Ⅎ 𝑗 ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) |
131 |
126 130
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) |
132 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) |
133 |
35 132
|
nfan |
⊢ Ⅎ 𝑡 ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) |
134 |
|
nfcv |
⊢ Ⅎ 𝑡 ( 0 ... 𝑛 ) |
135 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) |
136 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) |
137 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) |
138 |
135 136 137
|
nf3an |
⊢ Ⅎ 𝑡 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) |
139 |
134 138
|
nfralw |
⊢ Ⅎ 𝑡 ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) |
140 |
133 111 139
|
nf3an |
⊢ Ⅎ 𝑡 ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) |
141 |
2 140
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) |
142 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ { 𝑗 ∈ ( 1 ... 𝑛 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) } ) = ( 𝑡 ∈ 𝑇 ↦ { 𝑗 ∈ ( 1 ... 𝑛 ) ∣ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) } ) |
143 |
8
|
uniexd |
⊢ ( 𝜑 → ∪ 𝐽 ∈ V ) |
144 |
4 143
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
145 |
144
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) → 𝑇 ∈ V ) |
146 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) → 𝐹 : 𝑇 ⟶ ℝ ) |
147 |
16
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( 𝐹 ‘ 𝑡 ) ) |
148 |
147
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( 𝐹 ‘ 𝑡 ) ) |
149 |
|
simpr1r |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) → ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) |
150 |
149
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) |
151 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) → 𝐸 ∈ ℝ+ ) |
152 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) → 𝐸 < ( 1 / 3 ) ) |
153 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ) → 𝜑 ) |
154 |
|
simplr2 |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ) → 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ) |
155 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ) → 𝑗 ∈ ( 0 ... 𝑛 ) ) |
156 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ) → 𝜑 ) |
157 |
|
ffvelrn |
⊢ ( ( 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ) → ( 𝑥 ‘ 𝑗 ) ∈ 𝐴 ) |
158 |
157
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ) → ( 𝑥 ‘ 𝑗 ) ∈ 𝐴 ) |
159 |
10
|
sselda |
⊢ ( ( 𝜑 ∧ ( 𝑥 ‘ 𝑗 ) ∈ 𝐴 ) → ( 𝑥 ‘ 𝑗 ) ∈ 𝐶 ) |
160 |
3 4 5 159
|
fcnre |
⊢ ( ( 𝜑 ∧ ( 𝑥 ‘ 𝑗 ) ∈ 𝐴 ) → ( 𝑥 ‘ 𝑗 ) : 𝑇 ⟶ ℝ ) |
161 |
156 158 160
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ) → ( 𝑥 ‘ 𝑗 ) : 𝑇 ⟶ ℝ ) |
162 |
153 154 155 161
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ) → ( 𝑥 ‘ 𝑗 ) : 𝑇 ⟶ ℝ ) |
163 |
|
simp1r3 |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ∧ 𝑡 ∈ 𝑇 ) → ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) |
164 |
|
r19.26-3 |
⊢ ( ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ↔ ( ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) |
165 |
164
|
simp1bi |
⊢ ( ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) → ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ) |
166 |
|
simpl |
⊢ ( ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) → 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) |
167 |
166
|
2ralimi |
⊢ ( ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) → ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ 𝑇 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) |
168 |
163 165 167
|
3syl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ∧ 𝑡 ∈ 𝑇 ) → ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ 𝑇 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) |
169 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑗 ∈ ( 0 ... 𝑛 ) ) |
170 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
171 |
|
rspa |
⊢ ( ( ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ 𝑇 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ) → ∀ 𝑡 ∈ 𝑇 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) |
172 |
171
|
r19.21bi |
⊢ ( ( ( ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ 𝑇 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) |
173 |
168 169 170 172
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) |
174 |
|
simpr |
⊢ ( ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) → ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) |
175 |
174
|
2ralimi |
⊢ ( ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) → ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ 𝑇 ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) |
176 |
163 165 175
|
3syl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ∧ 𝑡 ∈ 𝑇 ) → ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ 𝑇 ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) |
177 |
|
rspa |
⊢ ( ( ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ 𝑇 ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ) → ∀ 𝑡 ∈ 𝑇 ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) |
178 |
177
|
r19.21bi |
⊢ ( ( ( ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ 𝑇 ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) |
179 |
176 169 170 178
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) |
180 |
|
simp1r3 |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) → ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) |
181 |
164
|
simp2bi |
⊢ ( ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) → ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ) |
182 |
180 181
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) → ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ) |
183 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) → 𝑗 ∈ ( 0 ... 𝑛 ) ) |
184 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) → 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) |
185 |
|
rspa |
⊢ ( ( ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ) → ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ) |
186 |
185
|
r19.21bi |
⊢ ( ( ( ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) → ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ) |
187 |
182 183 184 186
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ∧ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ) → ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ) |
188 |
|
simp1r3 |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ∧ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ) → ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) |
189 |
164
|
simp3bi |
⊢ ( ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) → ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) |
190 |
188 189
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ∧ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ) → ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) |
191 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ∧ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ) → 𝑗 ∈ ( 0 ... 𝑛 ) ) |
192 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ∧ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ) → 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ) |
193 |
|
rspa |
⊢ ( ( ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ) → ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) |
194 |
193
|
r19.21bi |
⊢ ( ( ( ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ) → ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) |
195 |
190 191 192 194
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑛 ) ∧ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ) → ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) |
196 |
1 131 141 6 7 142 109 145 146 148 150 151 152 162 173 179 187 195
|
stoweidlem34 |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) → ∀ 𝑡 ∈ 𝑇 ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) |
197 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
198 |
197
|
nfeq2 |
⊢ Ⅎ 𝑡 𝑔 = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
199 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) → ( 𝑔 ‘ 𝑡 ) = ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) |
200 |
199
|
breq1d |
⊢ ( 𝑔 = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) → ( ( 𝑔 ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ↔ ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ) ) |
201 |
199
|
breq2d |
⊢ ( 𝑔 = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) → ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝑔 ‘ 𝑡 ) ↔ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) |
202 |
200 201
|
anbi12d |
⊢ ( 𝑔 = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) → ( ( ( 𝑔 ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝑔 ‘ 𝑡 ) ) ↔ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) |
203 |
202
|
anbi2d |
⊢ ( 𝑔 = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) → ( ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( 𝑔 ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝑔 ‘ 𝑡 ) ) ) ↔ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) |
204 |
203
|
rexbidv |
⊢ ( 𝑔 = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) → ( ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( 𝑔 ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝑔 ‘ 𝑡 ) ) ) ↔ ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) |
205 |
198 204
|
ralbid |
⊢ ( 𝑔 = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) → ( ∀ 𝑡 ∈ 𝑇 ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( 𝑔 ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝑔 ‘ 𝑡 ) ) ) ↔ ∀ 𝑡 ∈ 𝑇 ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) |
206 |
205
|
rspcev |
⊢ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) → ∃ 𝑔 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( 𝑔 ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝑔 ‘ 𝑡 ) ) ) ) |
207 |
125 196 206
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) → ∃ 𝑔 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( 𝑔 ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝑔 ‘ 𝑡 ) ) ) ) |
208 |
207
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → ∃ 𝑔 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( 𝑔 ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
209 |
208
|
2eximdv |
⊢ ( 𝜑 → ( ∃ 𝑛 ∃ 𝑥 ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < ( ( 𝑛 − 1 ) · 𝐸 ) ) ∧ 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ∧ ∀ 𝑗 ∈ ( 0 ... 𝑛 ) ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ∧ ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) < ( 𝐸 / 𝑛 ) ∧ ∀ 𝑡 ∈ ( 𝐵 ‘ 𝑗 ) ( 1 − ( 𝐸 / 𝑛 ) ) < ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) → ∃ 𝑛 ∃ 𝑥 ∃ 𝑔 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( 𝑔 ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
210 |
107 209
|
mpd |
⊢ ( 𝜑 → ∃ 𝑛 ∃ 𝑥 ∃ 𝑔 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( 𝑔 ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝑔 ‘ 𝑡 ) ) ) ) |
211 |
|
idd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∃ 𝑔 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( 𝑔 ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝑔 ‘ 𝑡 ) ) ) → ∃ 𝑥 ∃ 𝑔 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( 𝑔 ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
212 |
211
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑛 ∃ 𝑥 ∃ 𝑔 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( 𝑔 ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝑔 ‘ 𝑡 ) ) ) → ∃ 𝑥 ∃ 𝑔 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( 𝑔 ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
213 |
210 212
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∃ 𝑔 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( 𝑔 ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝑔 ‘ 𝑡 ) ) ) ) |
214 |
|
idd |
⊢ ( 𝜑 → ( ∃ 𝑔 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( 𝑔 ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝑔 ‘ 𝑡 ) ) ) → ∃ 𝑔 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( 𝑔 ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
215 |
214
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∃ 𝑔 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( 𝑔 ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝑔 ‘ 𝑡 ) ) ) → ∃ 𝑔 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( 𝑔 ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
216 |
213 215
|
mpd |
⊢ ( 𝜑 → ∃ 𝑔 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ∃ 𝑗 ∈ ℝ ( ( ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ ( ( 𝑗 − ( 1 / 3 ) ) · 𝐸 ) ) ∧ ( ( 𝑔 ‘ 𝑡 ) < ( ( 𝑗 + ( 1 / 3 ) ) · 𝐸 ) ∧ ( ( 𝑗 − ( 4 / 3 ) ) · 𝐸 ) < ( 𝑔 ‘ 𝑡 ) ) ) ) |