Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem62.1 |
⊢ Ⅎ 𝑡 𝐹 |
2 |
|
stoweidlem62.2 |
⊢ Ⅎ 𝑓 𝜑 |
3 |
|
stoweidlem62.3 |
⊢ Ⅎ 𝑡 𝜑 |
4 |
|
stoweidlem62.4 |
⊢ 𝐻 = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) − inf ( ran 𝐹 , ℝ , < ) ) ) |
5 |
|
stoweidlem62.5 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
6 |
|
stoweidlem62.6 |
⊢ 𝑇 = ∪ 𝐽 |
7 |
|
stoweidlem62.7 |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
8 |
|
stoweidlem62.8 |
⊢ 𝐶 = ( 𝐽 Cn 𝐾 ) |
9 |
|
stoweidlem62.9 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
10 |
|
stoweidlem62.10 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
11 |
|
stoweidlem62.11 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
12 |
|
stoweidlem62.12 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
13 |
|
stoweidlem62.13 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ‘ 𝑟 ) ≠ ( 𝑞 ‘ 𝑡 ) ) |
14 |
|
stoweidlem62.14 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐶 ) |
15 |
|
stoweidlem62.15 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
16 |
|
stoweidlem62.16 |
⊢ ( 𝜑 → 𝑇 ≠ ∅ ) |
17 |
|
stoweidlem62.17 |
⊢ ( 𝜑 → 𝐸 < ( 1 / 3 ) ) |
18 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) − inf ( ran 𝐹 , ℝ , < ) ) ) |
19 |
4 18
|
nfcxfr |
⊢ Ⅎ 𝑡 𝐻 |
20 |
|
eleq1w |
⊢ ( 𝑔 = ℎ → ( 𝑔 ∈ 𝐴 ↔ ℎ ∈ 𝐴 ) ) |
21 |
20
|
3anbi3d |
⊢ ( 𝑔 = ℎ → ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ ℎ ∈ 𝐴 ) ) ) |
22 |
|
fveq1 |
⊢ ( 𝑔 = ℎ → ( 𝑔 ‘ 𝑡 ) = ( ℎ ‘ 𝑡 ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝑔 = ℎ → ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) = ( ( 𝑓 ‘ 𝑡 ) + ( ℎ ‘ 𝑡 ) ) ) |
24 |
23
|
mpteq2dv |
⊢ ( 𝑔 = ℎ → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( ℎ ‘ 𝑡 ) ) ) ) |
25 |
24
|
eleq1d |
⊢ ( 𝑔 = ℎ → ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( ℎ ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
26 |
21 25
|
imbi12d |
⊢ ( 𝑔 = ℎ → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ ℎ ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( ℎ ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
27 |
26 10
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ ℎ ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( ℎ ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
28 |
22
|
oveq2d |
⊢ ( 𝑔 = ℎ → ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) = ( ( 𝑓 ‘ 𝑡 ) · ( ℎ ‘ 𝑡 ) ) ) |
29 |
28
|
mpteq2dv |
⊢ ( 𝑔 = ℎ → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( ℎ ‘ 𝑡 ) ) ) ) |
30 |
29
|
eleq1d |
⊢ ( 𝑔 = ℎ → ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( ℎ ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
31 |
21 30
|
imbi12d |
⊢ ( 𝑔 = ℎ → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ ℎ ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( ℎ ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
32 |
31 11
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ ℎ ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( ℎ ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
33 |
1
|
nfrn |
⊢ Ⅎ 𝑡 ran 𝐹 |
34 |
|
nfcv |
⊢ Ⅎ 𝑡 ℝ |
35 |
|
nfcv |
⊢ Ⅎ 𝑡 < |
36 |
33 34 35
|
nfinf |
⊢ Ⅎ 𝑡 inf ( ran 𝐹 , ℝ , < ) |
37 |
|
eqid |
⊢ ( 𝑇 × { - inf ( ran 𝐹 , ℝ , < ) } ) = ( 𝑇 × { - inf ( ran 𝐹 , ℝ , < ) } ) |
38 |
|
cmptop |
⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) |
39 |
7 38
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
40 |
14 8
|
eleqtrdi |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
41 |
1 3 6 5 7 40 16
|
stoweidlem29 |
⊢ ( 𝜑 → ( inf ( ran 𝐹 , ℝ , < ) ∈ ran 𝐹 ∧ inf ( ran 𝐹 , ℝ , < ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 inf ( ran 𝐹 , ℝ , < ) ≤ ( 𝐹 ‘ 𝑡 ) ) ) |
42 |
41
|
simp2d |
⊢ ( 𝜑 → inf ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
43 |
1 36 3 6 37 5 39 8 14 42
|
stoweidlem47 |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) − inf ( ran 𝐹 , ℝ , < ) ) ) ∈ 𝐶 ) |
44 |
4 43
|
eqeltrid |
⊢ ( 𝜑 → 𝐻 ∈ 𝐶 ) |
45 |
41
|
simp3d |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 inf ( ran 𝐹 , ℝ , < ) ≤ ( 𝐹 ‘ 𝑡 ) ) |
46 |
45
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → inf ( ran 𝐹 , ℝ , < ) ≤ ( 𝐹 ‘ 𝑡 ) ) |
47 |
5 6 8 14
|
fcnre |
⊢ ( 𝜑 → 𝐹 : 𝑇 ⟶ ℝ ) |
48 |
47
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) |
49 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → inf ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
50 |
48 49
|
subge0d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 0 ≤ ( ( 𝐹 ‘ 𝑡 ) − inf ( ran 𝐹 , ℝ , < ) ) ↔ inf ( ran 𝐹 , ℝ , < ) ≤ ( 𝐹 ‘ 𝑡 ) ) ) |
51 |
46 50
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( ( 𝐹 ‘ 𝑡 ) − inf ( ran 𝐹 , ℝ , < ) ) ) |
52 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
53 |
48 49
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑡 ) − inf ( ran 𝐹 , ℝ , < ) ) ∈ ℝ ) |
54 |
4
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( ( 𝐹 ‘ 𝑡 ) − inf ( ran 𝐹 , ℝ , < ) ) ∈ ℝ ) → ( 𝐻 ‘ 𝑡 ) = ( ( 𝐹 ‘ 𝑡 ) − inf ( ran 𝐹 , ℝ , < ) ) ) |
55 |
52 53 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑡 ) = ( ( 𝐹 ‘ 𝑡 ) − inf ( ran 𝐹 , ℝ , < ) ) ) |
56 |
51 55
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( 𝐻 ‘ 𝑡 ) ) |
57 |
56
|
ex |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 → 0 ≤ ( 𝐻 ‘ 𝑡 ) ) ) |
58 |
3 57
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 0 ≤ ( 𝐻 ‘ 𝑡 ) ) |
59 |
15
|
rphalfcld |
⊢ ( 𝜑 → ( 𝐸 / 2 ) ∈ ℝ+ ) |
60 |
15
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
61 |
60
|
rehalfcld |
⊢ ( 𝜑 → ( 𝐸 / 2 ) ∈ ℝ ) |
62 |
|
3re |
⊢ 3 ∈ ℝ |
63 |
|
3ne0 |
⊢ 3 ≠ 0 |
64 |
62 63
|
rereccli |
⊢ ( 1 / 3 ) ∈ ℝ |
65 |
64
|
a1i |
⊢ ( 𝜑 → ( 1 / 3 ) ∈ ℝ ) |
66 |
|
rphalflt |
⊢ ( 𝐸 ∈ ℝ+ → ( 𝐸 / 2 ) < 𝐸 ) |
67 |
15 66
|
syl |
⊢ ( 𝜑 → ( 𝐸 / 2 ) < 𝐸 ) |
68 |
61 60 65 67 17
|
lttrd |
⊢ ( 𝜑 → ( 𝐸 / 2 ) < ( 1 / 3 ) ) |
69 |
19 3 5 7 6 16 8 9 27 32 12 13 44 58 59 68
|
stoweidlem61 |
⊢ ( 𝜑 → ∃ ℎ ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < ( 2 · ( 𝐸 / 2 ) ) ) |
70 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < ( 2 · ( 𝐸 / 2 ) ) |
71 |
3 70
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < ( 2 · ( 𝐸 / 2 ) ) ) |
72 |
|
rsp |
⊢ ( ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < ( 2 · ( 𝐸 / 2 ) ) → ( 𝑡 ∈ 𝑇 → ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < ( 2 · ( 𝐸 / 2 ) ) ) ) |
73 |
15
|
rpcnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
74 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
75 |
|
2ne0 |
⊢ 2 ≠ 0 |
76 |
75
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
77 |
73 74 76
|
divcan2d |
⊢ ( 𝜑 → ( 2 · ( 𝐸 / 2 ) ) = 𝐸 ) |
78 |
77
|
breq2d |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < ( 2 · ( 𝐸 / 2 ) ) ↔ ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) ) |
79 |
78
|
biimpd |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < ( 2 · ( 𝐸 / 2 ) ) → ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) ) |
80 |
72 79
|
sylan9r |
⊢ ( ( 𝜑 ∧ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < ( 2 · ( 𝐸 / 2 ) ) ) → ( 𝑡 ∈ 𝑇 → ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) ) |
81 |
71 80
|
ralrimi |
⊢ ( ( 𝜑 ∧ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < ( 2 · ( 𝐸 / 2 ) ) ) → ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) |
82 |
81
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < ( 2 · ( 𝐸 / 2 ) ) → ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) ) |
83 |
82
|
reximdv |
⊢ ( 𝜑 → ( ∃ ℎ ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < ( 2 · ( 𝐸 / 2 ) ) → ∃ ℎ ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) ) |
84 |
69 83
|
mpd |
⊢ ( 𝜑 → ∃ ℎ ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) |
85 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) + inf ( ran 𝐹 , ℝ , < ) ) ) |
86 |
|
nfcv |
⊢ Ⅎ 𝑡 ℎ |
87 |
|
nfv |
⊢ Ⅎ 𝑡 ℎ ∈ 𝐴 |
88 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 |
89 |
87 88
|
nfan |
⊢ Ⅎ 𝑡 ( ℎ ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) |
90 |
3 89
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ ( ℎ ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) ) |
91 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) + inf ( ran 𝐹 , ℝ , < ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) + inf ( ran 𝐹 , ℝ , < ) ) ) |
92 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) ) → 𝐹 : 𝑇 ⟶ ℝ ) |
93 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) ) → inf ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
94 |
10
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
95 |
12
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
96 |
9
|
sseld |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝐴 → 𝑓 ∈ 𝐶 ) ) |
97 |
8
|
eleq2i |
⊢ ( 𝑓 ∈ 𝐶 ↔ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) |
98 |
96 97
|
syl6ib |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝐴 → 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ) |
99 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
100 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
101 |
5
|
unieqi |
⊢ ∪ 𝐾 = ∪ ( topGen ‘ ran (,) ) |
102 |
100 101
|
eqtr4i |
⊢ ℝ = ∪ 𝐾 |
103 |
99 102
|
cnf |
⊢ ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) → 𝑓 : ∪ 𝐽 ⟶ ℝ ) |
104 |
98 103
|
syl6 |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝐴 → 𝑓 : ∪ 𝐽 ⟶ ℝ ) ) |
105 |
|
feq2 |
⊢ ( 𝑇 = ∪ 𝐽 → ( 𝑓 : 𝑇 ⟶ ℝ ↔ 𝑓 : ∪ 𝐽 ⟶ ℝ ) ) |
106 |
6 105
|
mp1i |
⊢ ( 𝜑 → ( 𝑓 : 𝑇 ⟶ ℝ ↔ 𝑓 : ∪ 𝐽 ⟶ ℝ ) ) |
107 |
104 106
|
sylibrd |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝐴 → 𝑓 : 𝑇 ⟶ ℝ ) ) |
108 |
2 107
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝐴 𝑓 : 𝑇 ⟶ ℝ ) |
109 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) ) → ∀ 𝑓 ∈ 𝐴 𝑓 : 𝑇 ⟶ ℝ ) |
110 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) ) → ℎ ∈ 𝐴 ) |
111 |
55
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑡 ) − inf ( ran 𝐹 , ℝ , < ) ) = ( 𝐻 ‘ 𝑡 ) ) |
112 |
111
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( ℎ ‘ 𝑡 ) − ( ( 𝐹 ‘ 𝑡 ) − inf ( ran 𝐹 , ℝ , < ) ) ) = ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) |
113 |
112
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( ( 𝐹 ‘ 𝑡 ) − inf ( ran 𝐹 , ℝ , < ) ) ) ) = ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) ) |
114 |
113
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( ( 𝐹 ‘ 𝑡 ) − inf ( ran 𝐹 , ℝ , < ) ) ) ) = ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) ) |
115 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) ) ∧ 𝑡 ∈ 𝑇 ) → ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) |
116 |
|
rspa |
⊢ ( ( ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ∧ 𝑡 ∈ 𝑇 ) → ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) |
117 |
115 116
|
sylancom |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) |
118 |
114 117
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( ( 𝐹 ‘ 𝑡 ) − inf ( ran 𝐹 , ℝ , < ) ) ) ) < 𝐸 ) |
119 |
118
|
ex |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) ) → ( 𝑡 ∈ 𝑇 → ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( ( 𝐹 ‘ 𝑡 ) − inf ( ran 𝐹 , ℝ , < ) ) ) ) < 𝐸 ) ) |
120 |
90 119
|
ralrimi |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) ) → ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( ( 𝐹 ‘ 𝑡 ) − inf ( ran 𝐹 , ℝ , < ) ) ) ) < 𝐸 ) |
121 |
85 86 36 90 91 92 93 94 95 109 110 120
|
stoweidlem21 |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ℎ ‘ 𝑡 ) − ( 𝐻 ‘ 𝑡 ) ) ) < 𝐸 ) ) → ∃ 𝑓 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) |
122 |
84 121
|
rexlimddv |
⊢ ( 𝜑 → ∃ 𝑓 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) |