| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem7.1 |
⊢ 𝐹 = ( 𝑖 ∈ ℕ0 ↦ ( ( 1 / 𝐴 ) ↑ 𝑖 ) ) |
| 2 |
|
stoweidlem7.2 |
⊢ 𝐺 = ( 𝑖 ∈ ℕ0 ↦ ( 𝐵 ↑ 𝑖 ) ) |
| 3 |
|
stoweidlem7.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 4 |
|
stoweidlem7.4 |
⊢ ( 𝜑 → 1 < 𝐴 ) |
| 5 |
|
stoweidlem7.5 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
| 6 |
|
stoweidlem7.6 |
⊢ ( 𝜑 → 𝐵 < 1 ) |
| 7 |
|
stoweidlem7.7 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 8 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 9 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 10 |
|
oveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝐵 ↑ 𝑖 ) = ( 𝐵 ↑ 𝑘 ) ) |
| 11 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 ) |
| 13 |
5
|
rpcnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
| 15 |
14 12
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐵 ↑ 𝑘 ) ∈ ℂ ) |
| 16 |
2 10 12 15
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐵 ↑ 𝑘 ) ) |
| 17 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 18 |
17
|
renegcld |
⊢ ( 𝜑 → - 1 ∈ ℝ ) |
| 19 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 20 |
5
|
rpred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 21 |
|
neg1lt0 |
⊢ - 1 < 0 |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → - 1 < 0 ) |
| 23 |
5
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝐵 ) |
| 24 |
18 19 20 22 23
|
lttrd |
⊢ ( 𝜑 → - 1 < 𝐵 ) |
| 25 |
20 17
|
absltd |
⊢ ( 𝜑 → ( ( abs ‘ 𝐵 ) < 1 ↔ ( - 1 < 𝐵 ∧ 𝐵 < 1 ) ) ) |
| 26 |
24 6 25
|
mpbir2and |
⊢ ( 𝜑 → ( abs ‘ 𝐵 ) < 1 ) |
| 27 |
13 26
|
expcnv |
⊢ ( 𝜑 → ( 𝑖 ∈ ℕ0 ↦ ( 𝐵 ↑ 𝑖 ) ) ⇝ 0 ) |
| 28 |
2 27
|
eqbrtrid |
⊢ ( 𝜑 → 𝐺 ⇝ 0 ) |
| 29 |
8 9 7 16 28
|
climi |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) ) |
| 30 |
|
r19.26 |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) ↔ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) ) |
| 31 |
30
|
simprbi |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) |
| 32 |
31
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) |
| 33 |
|
oveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝐵 ↑ 𝑘 ) = ( 𝐵 ↑ 𝑖 ) ) |
| 34 |
33
|
oveq1d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝐵 ↑ 𝑘 ) − 0 ) = ( ( 𝐵 ↑ 𝑖 ) − 0 ) ) |
| 35 |
34
|
fveq2d |
⊢ ( 𝑘 = 𝑖 → ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) = ( abs ‘ ( ( 𝐵 ↑ 𝑖 ) − 0 ) ) ) |
| 36 |
35
|
breq1d |
⊢ ( 𝑘 = 𝑖 → ( ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ↔ ( abs ‘ ( ( 𝐵 ↑ 𝑖 ) − 0 ) ) < 𝐸 ) ) |
| 37 |
36
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( abs ‘ ( ( 𝐵 ↑ 𝑖 ) − 0 ) ) < 𝐸 ) |
| 38 |
32 37
|
sylancom |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( abs ‘ ( ( 𝐵 ↑ 𝑖 ) − 0 ) ) < 𝐸 ) |
| 39 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝜑 ) |
| 40 |
39 5
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝐵 ∈ ℝ+ ) |
| 41 |
40
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝐵 ∈ ℝ ) |
| 42 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑛 ∈ ℕ ) |
| 43 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
| 44 |
42 43
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑛 ∈ ℕ0 ) |
| 45 |
|
eluznn0 |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑖 ∈ ℕ0 ) |
| 46 |
44 45
|
sylancom |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑖 ∈ ℕ0 ) |
| 47 |
41 46
|
reexpcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝐵 ↑ 𝑖 ) ∈ ℝ ) |
| 48 |
|
rpre |
⊢ ( 𝐸 ∈ ℝ+ → 𝐸 ∈ ℝ ) |
| 49 |
39 7 48
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝐸 ∈ ℝ ) |
| 50 |
|
recn |
⊢ ( ( 𝐵 ↑ 𝑖 ) ∈ ℝ → ( 𝐵 ↑ 𝑖 ) ∈ ℂ ) |
| 51 |
50
|
subid1d |
⊢ ( ( 𝐵 ↑ 𝑖 ) ∈ ℝ → ( ( 𝐵 ↑ 𝑖 ) − 0 ) = ( 𝐵 ↑ 𝑖 ) ) |
| 52 |
51
|
adantr |
⊢ ( ( ( 𝐵 ↑ 𝑖 ) ∈ ℝ ∧ 𝐸 ∈ ℝ ) → ( ( 𝐵 ↑ 𝑖 ) − 0 ) = ( 𝐵 ↑ 𝑖 ) ) |
| 53 |
52
|
fveq2d |
⊢ ( ( ( 𝐵 ↑ 𝑖 ) ∈ ℝ ∧ 𝐸 ∈ ℝ ) → ( abs ‘ ( ( 𝐵 ↑ 𝑖 ) − 0 ) ) = ( abs ‘ ( 𝐵 ↑ 𝑖 ) ) ) |
| 54 |
53
|
breq1d |
⊢ ( ( ( 𝐵 ↑ 𝑖 ) ∈ ℝ ∧ 𝐸 ∈ ℝ ) → ( ( abs ‘ ( ( 𝐵 ↑ 𝑖 ) − 0 ) ) < 𝐸 ↔ ( abs ‘ ( 𝐵 ↑ 𝑖 ) ) < 𝐸 ) ) |
| 55 |
|
abslt |
⊢ ( ( ( 𝐵 ↑ 𝑖 ) ∈ ℝ ∧ 𝐸 ∈ ℝ ) → ( ( abs ‘ ( 𝐵 ↑ 𝑖 ) ) < 𝐸 ↔ ( - 𝐸 < ( 𝐵 ↑ 𝑖 ) ∧ ( 𝐵 ↑ 𝑖 ) < 𝐸 ) ) ) |
| 56 |
54 55
|
bitrd |
⊢ ( ( ( 𝐵 ↑ 𝑖 ) ∈ ℝ ∧ 𝐸 ∈ ℝ ) → ( ( abs ‘ ( ( 𝐵 ↑ 𝑖 ) − 0 ) ) < 𝐸 ↔ ( - 𝐸 < ( 𝐵 ↑ 𝑖 ) ∧ ( 𝐵 ↑ 𝑖 ) < 𝐸 ) ) ) |
| 57 |
47 49 56
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( abs ‘ ( ( 𝐵 ↑ 𝑖 ) − 0 ) ) < 𝐸 ↔ ( - 𝐸 < ( 𝐵 ↑ 𝑖 ) ∧ ( 𝐵 ↑ 𝑖 ) < 𝐸 ) ) ) |
| 58 |
38 57
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( - 𝐸 < ( 𝐵 ↑ 𝑖 ) ∧ ( 𝐵 ↑ 𝑖 ) < 𝐸 ) ) |
| 59 |
58
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝐵 ↑ 𝑖 ) < 𝐸 ) |
| 60 |
|
eluznn |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑖 ∈ ℕ ) |
| 61 |
42 60
|
sylancom |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑖 ∈ ℕ ) |
| 62 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
| 63 |
|
nnnn0 |
⊢ ( 𝑖 ∈ ℕ → 𝑖 ∈ ℕ0 ) |
| 64 |
63
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ℕ0 ) |
| 65 |
62 64
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝐵 ↑ 𝑖 ) ∈ ℝ ) |
| 66 |
7
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝐸 ∈ ℝ ) |
| 68 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 1 ∈ ℝ ) |
| 69 |
65 67 68
|
ltsub2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( 𝐵 ↑ 𝑖 ) < 𝐸 ↔ ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑖 ) ) ) ) |
| 70 |
39 61 69
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝐵 ↑ 𝑖 ) < 𝐸 ↔ ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑖 ) ) ) ) |
| 71 |
59 70
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑖 ) ) ) |
| 72 |
71
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) ) → ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑖 ) ) ) |
| 73 |
33
|
oveq2d |
⊢ ( 𝑘 = 𝑖 → ( 1 − ( 𝐵 ↑ 𝑘 ) ) = ( 1 − ( 𝐵 ↑ 𝑖 ) ) ) |
| 74 |
73
|
breq2d |
⊢ ( 𝑘 = 𝑖 → ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑘 ) ) ↔ ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑖 ) ) ) ) |
| 75 |
74
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑘 ) ) ↔ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑖 ) ) ) |
| 76 |
72 75
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑘 ) ) ) |
| 77 |
76
|
ex |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 78 |
77
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐵 ↑ 𝑘 ) − 0 ) ) < 𝐸 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 79 |
29 78
|
mpd |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑘 ) ) ) |
| 80 |
|
oveq2 |
⊢ ( 𝑖 = 𝑘 → ( ( 1 / 𝐴 ) ↑ 𝑖 ) = ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) |
| 81 |
3
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 82 |
|
0lt1 |
⊢ 0 < 1 |
| 83 |
82
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
| 84 |
19 17 3 83 4
|
lttrd |
⊢ ( 𝜑 → 0 < 𝐴 ) |
| 85 |
84
|
gt0ne0d |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 86 |
81 85
|
reccld |
⊢ ( 𝜑 → ( 1 / 𝐴 ) ∈ ℂ ) |
| 87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝐴 ) ∈ ℂ ) |
| 88 |
87 12
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝐴 ) ↑ 𝑘 ) ∈ ℂ ) |
| 89 |
1 80 12 88
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) |
| 90 |
3 85
|
rereccld |
⊢ ( 𝜑 → ( 1 / 𝐴 ) ∈ ℝ ) |
| 91 |
3 84
|
recgt0d |
⊢ ( 𝜑 → 0 < ( 1 / 𝐴 ) ) |
| 92 |
18 19 90 22 91
|
lttrd |
⊢ ( 𝜑 → - 1 < ( 1 / 𝐴 ) ) |
| 93 |
|
ltdiv23 |
⊢ ( ( 1 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 ∈ ℝ ∧ 0 < 1 ) ) → ( ( 1 / 𝐴 ) < 1 ↔ ( 1 / 1 ) < 𝐴 ) ) |
| 94 |
17 3 84 17 83 93
|
syl122anc |
⊢ ( 𝜑 → ( ( 1 / 𝐴 ) < 1 ↔ ( 1 / 1 ) < 𝐴 ) ) |
| 95 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 96 |
95
|
div1d |
⊢ ( 𝜑 → ( 1 / 1 ) = 1 ) |
| 97 |
96
|
breq1d |
⊢ ( 𝜑 → ( ( 1 / 1 ) < 𝐴 ↔ 1 < 𝐴 ) ) |
| 98 |
94 97
|
bitrd |
⊢ ( 𝜑 → ( ( 1 / 𝐴 ) < 1 ↔ 1 < 𝐴 ) ) |
| 99 |
4 98
|
mpbird |
⊢ ( 𝜑 → ( 1 / 𝐴 ) < 1 ) |
| 100 |
90 17
|
absltd |
⊢ ( 𝜑 → ( ( abs ‘ ( 1 / 𝐴 ) ) < 1 ↔ ( - 1 < ( 1 / 𝐴 ) ∧ ( 1 / 𝐴 ) < 1 ) ) ) |
| 101 |
92 99 100
|
mpbir2and |
⊢ ( 𝜑 → ( abs ‘ ( 1 / 𝐴 ) ) < 1 ) |
| 102 |
86 101
|
expcnv |
⊢ ( 𝜑 → ( 𝑖 ∈ ℕ0 ↦ ( ( 1 / 𝐴 ) ↑ 𝑖 ) ) ⇝ 0 ) |
| 103 |
1 102
|
eqbrtrid |
⊢ ( 𝜑 → 𝐹 ⇝ 0 ) |
| 104 |
8 9 7 89 103
|
climi2 |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( ( ( 1 / 𝐴 ) ↑ 𝑘 ) − 0 ) ) < 𝐸 ) |
| 105 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝜑 ) |
| 106 |
|
uznnssnn |
⊢ ( 𝑛 ∈ ℕ → ( ℤ≥ ‘ 𝑛 ) ⊆ ℕ ) |
| 107 |
106
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ℤ≥ ‘ 𝑛 ) ⊆ ℕ ) |
| 108 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 109 |
107 108
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑘 ∈ ℕ ) |
| 110 |
88
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 / 𝐴 ) ↑ 𝑘 ) − 0 ) = ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) |
| 111 |
110
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( ( ( 1 / 𝐴 ) ↑ 𝑘 ) − 0 ) ) = ( abs ‘ ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) ) |
| 112 |
90
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝐴 ) ∈ ℝ ) |
| 113 |
112 12
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝐴 ) ↑ 𝑘 ) ∈ ℝ ) |
| 114 |
19 90 91
|
ltled |
⊢ ( 𝜑 → 0 ≤ ( 1 / 𝐴 ) ) |
| 115 |
114
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 1 / 𝐴 ) ) |
| 116 |
112 12 115
|
expge0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) |
| 117 |
113 116
|
absidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) = ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) |
| 118 |
111 117
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( ( ( 1 / 𝐴 ) ↑ 𝑘 ) − 0 ) ) = ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) |
| 119 |
118
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( abs ‘ ( ( ( 1 / 𝐴 ) ↑ 𝑘 ) − 0 ) ) < 𝐸 ↔ ( ( 1 / 𝐴 ) ↑ 𝑘 ) < 𝐸 ) ) |
| 120 |
119
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( abs ‘ ( ( ( 1 / 𝐴 ) ↑ 𝑘 ) − 0 ) ) < 𝐸 → ( ( 1 / 𝐴 ) ↑ 𝑘 ) < 𝐸 ) ) |
| 121 |
105 109 120
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( abs ‘ ( ( ( 1 / 𝐴 ) ↑ 𝑘 ) − 0 ) ) < 𝐸 → ( ( 1 / 𝐴 ) ↑ 𝑘 ) < 𝐸 ) ) |
| 122 |
121
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( ( ( 1 / 𝐴 ) ↑ 𝑘 ) − 0 ) ) < 𝐸 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 1 / 𝐴 ) ↑ 𝑘 ) < 𝐸 ) ) |
| 123 |
122
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( ( ( 1 / 𝐴 ) ↑ 𝑘 ) − 0 ) ) < 𝐸 → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 1 / 𝐴 ) ↑ 𝑘 ) < 𝐸 ) ) |
| 124 |
104 123
|
mpd |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 1 / 𝐴 ) ↑ 𝑘 ) < 𝐸 ) |
| 125 |
8
|
rexanuz2 |
⊢ ( ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑘 ) ) ∧ ( ( 1 / 𝐴 ) ↑ 𝑘 ) < 𝐸 ) ↔ ( ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑘 ) ) ∧ ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 1 / 𝐴 ) ↑ 𝑘 ) < 𝐸 ) ) |
| 126 |
79 124 125
|
sylanbrc |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑘 ) ) ∧ ( ( 1 / 𝐴 ) ↑ 𝑘 ) < 𝐸 ) ) |
| 127 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑘 ) ) ∧ ( ( 1 / 𝐴 ) ↑ 𝑘 ) < 𝐸 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑘 ) ) ∧ ( ( 1 / 𝐴 ) ↑ 𝑘 ) < 𝐸 ) ) |
| 128 |
|
nnz |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) |
| 129 |
|
uzid |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 130 |
128 129
|
syl |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 131 |
130
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑘 ) ) ∧ ( ( 1 / 𝐴 ) ↑ 𝑘 ) < 𝐸 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 132 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐵 ↑ 𝑘 ) = ( 𝐵 ↑ 𝑛 ) ) |
| 133 |
132
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( 1 − ( 𝐵 ↑ 𝑘 ) ) = ( 1 − ( 𝐵 ↑ 𝑛 ) ) ) |
| 134 |
133
|
breq2d |
⊢ ( 𝑘 = 𝑛 → ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑘 ) ) ↔ ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑛 ) ) ) ) |
| 135 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( ( 1 / 𝐴 ) ↑ 𝑘 ) = ( ( 1 / 𝐴 ) ↑ 𝑛 ) ) |
| 136 |
135
|
breq1d |
⊢ ( 𝑘 = 𝑛 → ( ( ( 1 / 𝐴 ) ↑ 𝑘 ) < 𝐸 ↔ ( ( 1 / 𝐴 ) ↑ 𝑛 ) < 𝐸 ) ) |
| 137 |
134 136
|
anbi12d |
⊢ ( 𝑘 = 𝑛 → ( ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑘 ) ) ∧ ( ( 1 / 𝐴 ) ↑ 𝑘 ) < 𝐸 ) ↔ ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑛 ) ) ∧ ( ( 1 / 𝐴 ) ↑ 𝑛 ) < 𝐸 ) ) ) |
| 138 |
137
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑘 ) ) ∧ ( ( 1 / 𝐴 ) ↑ 𝑘 ) < 𝐸 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑛 ) ) ∧ ( ( 1 / 𝐴 ) ↑ 𝑛 ) < 𝐸 ) ) |
| 139 |
127 131 138
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑘 ) ) ∧ ( ( 1 / 𝐴 ) ↑ 𝑘 ) < 𝐸 ) ) → ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑛 ) ) ∧ ( ( 1 / 𝐴 ) ↑ 𝑛 ) < 𝐸 ) ) |
| 140 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 1 ∈ ℂ ) |
| 141 |
81 85
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
| 142 |
141
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
| 143 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
| 144 |
|
expdiv |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 1 / 𝐴 ) ↑ 𝑛 ) = ( ( 1 ↑ 𝑛 ) / ( 𝐴 ↑ 𝑛 ) ) ) |
| 145 |
140 142 143 144
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 1 / 𝐴 ) ↑ 𝑛 ) = ( ( 1 ↑ 𝑛 ) / ( 𝐴 ↑ 𝑛 ) ) ) |
| 146 |
128
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℤ ) |
| 147 |
|
1exp |
⊢ ( 𝑛 ∈ ℤ → ( 1 ↑ 𝑛 ) = 1 ) |
| 148 |
146 147
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 ↑ 𝑛 ) = 1 ) |
| 149 |
148
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 1 ↑ 𝑛 ) / ( 𝐴 ↑ 𝑛 ) ) = ( 1 / ( 𝐴 ↑ 𝑛 ) ) ) |
| 150 |
145 149
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 1 / 𝐴 ) ↑ 𝑛 ) = ( 1 / ( 𝐴 ↑ 𝑛 ) ) ) |
| 151 |
150
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 1 / 𝐴 ) ↑ 𝑛 ) < 𝐸 ↔ ( 1 / ( 𝐴 ↑ 𝑛 ) ) < 𝐸 ) ) |
| 152 |
151
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑘 ) ) ∧ ( ( 1 / 𝐴 ) ↑ 𝑘 ) < 𝐸 ) ) → ( ( ( 1 / 𝐴 ) ↑ 𝑛 ) < 𝐸 ↔ ( 1 / ( 𝐴 ↑ 𝑛 ) ) < 𝐸 ) ) |
| 153 |
152
|
anbi2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑘 ) ) ∧ ( ( 1 / 𝐴 ) ↑ 𝑘 ) < 𝐸 ) ) → ( ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑛 ) ) ∧ ( ( 1 / 𝐴 ) ↑ 𝑛 ) < 𝐸 ) ↔ ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑛 ) ) ∧ ( 1 / ( 𝐴 ↑ 𝑛 ) ) < 𝐸 ) ) ) |
| 154 |
139 153
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑘 ) ) ∧ ( ( 1 / 𝐴 ) ↑ 𝑘 ) < 𝐸 ) ) → ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑛 ) ) ∧ ( 1 / ( 𝐴 ↑ 𝑛 ) ) < 𝐸 ) ) |
| 155 |
154
|
ex |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑘 ) ) ∧ ( ( 1 / 𝐴 ) ↑ 𝑘 ) < 𝐸 ) → ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑛 ) ) ∧ ( 1 / ( 𝐴 ↑ 𝑛 ) ) < 𝐸 ) ) ) |
| 156 |
155
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑘 ) ) ∧ ( ( 1 / 𝐴 ) ↑ 𝑘 ) < 𝐸 ) → ∃ 𝑛 ∈ ℕ ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑛 ) ) ∧ ( 1 / ( 𝐴 ↑ 𝑛 ) ) < 𝐸 ) ) ) |
| 157 |
126 156
|
mpd |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ( ( 1 − 𝐸 ) < ( 1 − ( 𝐵 ↑ 𝑛 ) ) ∧ ( 1 / ( 𝐴 ↑ 𝑛 ) ) < 𝐸 ) ) |