| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem9.1 |
⊢ ( 𝜑 → 𝑇 = ∅ ) |
| 2 |
|
stoweidlem9.2 |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 1 ) ∈ 𝐴 ) |
| 3 |
|
mpteq1 |
⊢ ( 𝑇 = ∅ → ( 𝑡 ∈ 𝑇 ↦ 1 ) = ( 𝑡 ∈ ∅ ↦ 1 ) ) |
| 4 |
|
mpt0 |
⊢ ( 𝑡 ∈ ∅ ↦ 1 ) = ∅ |
| 5 |
3 4
|
eqtrdi |
⊢ ( 𝑇 = ∅ → ( 𝑡 ∈ 𝑇 ↦ 1 ) = ∅ ) |
| 6 |
1 5
|
syl |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 1 ) = ∅ ) |
| 7 |
6 2
|
eqeltrrd |
⊢ ( 𝜑 → ∅ ∈ 𝐴 ) |
| 8 |
|
rzal |
⊢ ( 𝑇 = ∅ → ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ∅ ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) |
| 9 |
1 8
|
syl |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ∅ ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) |
| 10 |
|
fveq1 |
⊢ ( 𝑔 = ∅ → ( 𝑔 ‘ 𝑡 ) = ( ∅ ‘ 𝑡 ) ) |
| 11 |
10
|
fvoveq1d |
⊢ ( 𝑔 = ∅ → ( abs ‘ ( ( 𝑔 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) = ( abs ‘ ( ( ∅ ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 12 |
11
|
breq1d |
⊢ ( 𝑔 = ∅ → ( ( abs ‘ ( ( 𝑔 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ↔ ( abs ‘ ( ( ∅ ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) ) |
| 13 |
12
|
ralbidv |
⊢ ( 𝑔 = ∅ → ( ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑔 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ↔ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ∅ ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) ) |
| 14 |
13
|
rspcev |
⊢ ( ( ∅ ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( ∅ ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) → ∃ 𝑔 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑔 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) |
| 15 |
7 9 14
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑔 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑔 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) |