Metamath Proof Explorer


Theorem stoweidlem9

Description: Lemma for stoweid : here the Stone Weierstrass theorem is proven for the trivial case, T is the empty set. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem9.1 ( 𝜑𝑇 = ∅ )
stoweidlem9.2 ( 𝜑 → ( 𝑡𝑇 ↦ 1 ) ∈ 𝐴 )
Assertion stoweidlem9 ( 𝜑 → ∃ 𝑔𝐴𝑡𝑇 ( abs ‘ ( ( 𝑔𝑡 ) − ( 𝐹𝑡 ) ) ) < 𝐸 )

Proof

Step Hyp Ref Expression
1 stoweidlem9.1 ( 𝜑𝑇 = ∅ )
2 stoweidlem9.2 ( 𝜑 → ( 𝑡𝑇 ↦ 1 ) ∈ 𝐴 )
3 mpteq1 ( 𝑇 = ∅ → ( 𝑡𝑇 ↦ 1 ) = ( 𝑡 ∈ ∅ ↦ 1 ) )
4 mpt0 ( 𝑡 ∈ ∅ ↦ 1 ) = ∅
5 3 4 eqtrdi ( 𝑇 = ∅ → ( 𝑡𝑇 ↦ 1 ) = ∅ )
6 1 5 syl ( 𝜑 → ( 𝑡𝑇 ↦ 1 ) = ∅ )
7 6 2 eqeltrrd ( 𝜑 → ∅ ∈ 𝐴 )
8 rzal ( 𝑇 = ∅ → ∀ 𝑡𝑇 ( abs ‘ ( ( ∅ ‘ 𝑡 ) − ( 𝐹𝑡 ) ) ) < 𝐸 )
9 1 8 syl ( 𝜑 → ∀ 𝑡𝑇 ( abs ‘ ( ( ∅ ‘ 𝑡 ) − ( 𝐹𝑡 ) ) ) < 𝐸 )
10 fveq1 ( 𝑔 = ∅ → ( 𝑔𝑡 ) = ( ∅ ‘ 𝑡 ) )
11 10 fvoveq1d ( 𝑔 = ∅ → ( abs ‘ ( ( 𝑔𝑡 ) − ( 𝐹𝑡 ) ) ) = ( abs ‘ ( ( ∅ ‘ 𝑡 ) − ( 𝐹𝑡 ) ) ) )
12 11 breq1d ( 𝑔 = ∅ → ( ( abs ‘ ( ( 𝑔𝑡 ) − ( 𝐹𝑡 ) ) ) < 𝐸 ↔ ( abs ‘ ( ( ∅ ‘ 𝑡 ) − ( 𝐹𝑡 ) ) ) < 𝐸 ) )
13 12 ralbidv ( 𝑔 = ∅ → ( ∀ 𝑡𝑇 ( abs ‘ ( ( 𝑔𝑡 ) − ( 𝐹𝑡 ) ) ) < 𝐸 ↔ ∀ 𝑡𝑇 ( abs ‘ ( ( ∅ ‘ 𝑡 ) − ( 𝐹𝑡 ) ) ) < 𝐸 ) )
14 13 rspcev ( ( ∅ ∈ 𝐴 ∧ ∀ 𝑡𝑇 ( abs ‘ ( ( ∅ ‘ 𝑡 ) − ( 𝐹𝑡 ) ) ) < 𝐸 ) → ∃ 𝑔𝐴𝑡𝑇 ( abs ‘ ( ( 𝑔𝑡 ) − ( 𝐹𝑡 ) ) ) < 𝐸 )
15 7 9 14 syl2anc ( 𝜑 → ∃ 𝑔𝐴𝑡𝑇 ( abs ‘ ( ( 𝑔𝑡 ) − ( 𝐹𝑡 ) ) ) < 𝐸 )