Database
BASIC STRUCTURES
Extensible structures
Basic definitions
Structure component indices
strfv2
Metamath Proof Explorer
Description: A variation on strfv to avoid asserting that S itself is a
function, which involves sethood of all the ordered pair components of
S . (Contributed by Mario Carneiro , 30-Apr-2015)
Ref
Expression
Hypotheses
strfv2.s
⊢ 𝑆 ∈ V
strfv2.f
⊢ Fun ◡ ◡ 𝑆
strfv2.e
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx )
strfv2.n
⊢ 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ 𝑆
Assertion
strfv2
⊢ ( 𝐶 ∈ 𝑉 → 𝐶 = ( 𝐸 ‘ 𝑆 ) )
Proof
Step
Hyp
Ref
Expression
1
strfv2.s
⊢ 𝑆 ∈ V
2
strfv2.f
⊢ Fun ◡ ◡ 𝑆
3
strfv2.e
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx )
4
strfv2.n
⊢ 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ 𝑆
5
1
a1i
⊢ ( 𝐶 ∈ 𝑉 → 𝑆 ∈ V )
6
2
a1i
⊢ ( 𝐶 ∈ 𝑉 → Fun ◡ ◡ 𝑆 )
7
4
a1i
⊢ ( 𝐶 ∈ 𝑉 → 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ 𝑆 )
8
id
⊢ ( 𝐶 ∈ 𝑉 → 𝐶 ∈ 𝑉 )
9
3 5 6 7 8
strfv2d
⊢ ( 𝐶 ∈ 𝑉 → 𝐶 = ( 𝐸 ‘ 𝑆 ) )