Metamath Proof Explorer


Theorem strfv2d

Description: Deduction version of strfv2 . (Contributed by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses strfv2d.e 𝐸 = Slot ( 𝐸 ‘ ndx )
strfv2d.s ( 𝜑𝑆𝑉 )
strfv2d.f ( 𝜑 → Fun 𝑆 )
strfv2d.n ( 𝜑 → ⟨ ( 𝐸 ‘ ndx ) , 𝐶 ⟩ ∈ 𝑆 )
strfv2d.c ( 𝜑𝐶𝑊 )
Assertion strfv2d ( 𝜑𝐶 = ( 𝐸𝑆 ) )

Proof

Step Hyp Ref Expression
1 strfv2d.e 𝐸 = Slot ( 𝐸 ‘ ndx )
2 strfv2d.s ( 𝜑𝑆𝑉 )
3 strfv2d.f ( 𝜑 → Fun 𝑆 )
4 strfv2d.n ( 𝜑 → ⟨ ( 𝐸 ‘ ndx ) , 𝐶 ⟩ ∈ 𝑆 )
5 strfv2d.c ( 𝜑𝐶𝑊 )
6 1 2 strfvnd ( 𝜑 → ( 𝐸𝑆 ) = ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) )
7 cnvcnv2 𝑆 = ( 𝑆 ↾ V )
8 7 fveq1i ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) = ( ( 𝑆 ↾ V ) ‘ ( 𝐸 ‘ ndx ) )
9 fvex ( 𝐸 ‘ ndx ) ∈ V
10 fvres ( ( 𝐸 ‘ ndx ) ∈ V → ( ( 𝑆 ↾ V ) ‘ ( 𝐸 ‘ ndx ) ) = ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) )
11 9 10 ax-mp ( ( 𝑆 ↾ V ) ‘ ( 𝐸 ‘ ndx ) ) = ( 𝑆 ‘ ( 𝐸 ‘ ndx ) )
12 8 11 eqtri ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) = ( 𝑆 ‘ ( 𝐸 ‘ ndx ) )
13 5 elexd ( 𝜑𝐶 ∈ V )
14 opelxpi ( ( ( 𝐸 ‘ ndx ) ∈ V ∧ 𝐶 ∈ V ) → ⟨ ( 𝐸 ‘ ndx ) , 𝐶 ⟩ ∈ ( V × V ) )
15 9 13 14 sylancr ( 𝜑 → ⟨ ( 𝐸 ‘ ndx ) , 𝐶 ⟩ ∈ ( V × V ) )
16 4 15 elind ( 𝜑 → ⟨ ( 𝐸 ‘ ndx ) , 𝐶 ⟩ ∈ ( 𝑆 ∩ ( V × V ) ) )
17 cnvcnv 𝑆 = ( 𝑆 ∩ ( V × V ) )
18 16 17 eleqtrrdi ( 𝜑 → ⟨ ( 𝐸 ‘ ndx ) , 𝐶 ⟩ ∈ 𝑆 )
19 funopfv ( Fun 𝑆 → ( ⟨ ( 𝐸 ‘ ndx ) , 𝐶 ⟩ ∈ 𝑆 → ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) = 𝐶 ) )
20 3 18 19 sylc ( 𝜑 → ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) = 𝐶 )
21 12 20 eqtr3id ( 𝜑 → ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) = 𝐶 )
22 6 21 eqtr2d ( 𝜑𝐶 = ( 𝐸𝑆 ) )