| Step |
Hyp |
Ref |
Expression |
| 1 |
|
strfv2d.e |
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) |
| 2 |
|
strfv2d.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
| 3 |
|
strfv2d.f |
⊢ ( 𝜑 → Fun ◡ ◡ 𝑆 ) |
| 4 |
|
strfv2d.n |
⊢ ( 𝜑 → 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ 𝑆 ) |
| 5 |
|
strfv2d.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) |
| 6 |
1 2
|
strfvnd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑆 ) = ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) ) |
| 7 |
|
cnvcnv2 |
⊢ ◡ ◡ 𝑆 = ( 𝑆 ↾ V ) |
| 8 |
7
|
fveq1i |
⊢ ( ◡ ◡ 𝑆 ‘ ( 𝐸 ‘ ndx ) ) = ( ( 𝑆 ↾ V ) ‘ ( 𝐸 ‘ ndx ) ) |
| 9 |
|
fvex |
⊢ ( 𝐸 ‘ ndx ) ∈ V |
| 10 |
|
fvres |
⊢ ( ( 𝐸 ‘ ndx ) ∈ V → ( ( 𝑆 ↾ V ) ‘ ( 𝐸 ‘ ndx ) ) = ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) ) |
| 11 |
9 10
|
ax-mp |
⊢ ( ( 𝑆 ↾ V ) ‘ ( 𝐸 ‘ ndx ) ) = ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) |
| 12 |
8 11
|
eqtri |
⊢ ( ◡ ◡ 𝑆 ‘ ( 𝐸 ‘ ndx ) ) = ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) |
| 13 |
5
|
elexd |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 14 |
|
opelxpi |
⊢ ( ( ( 𝐸 ‘ ndx ) ∈ V ∧ 𝐶 ∈ V ) → 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ ( V × V ) ) |
| 15 |
9 13 14
|
sylancr |
⊢ ( 𝜑 → 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ ( V × V ) ) |
| 16 |
4 15
|
elind |
⊢ ( 𝜑 → 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ ( 𝑆 ∩ ( V × V ) ) ) |
| 17 |
|
cnvcnv |
⊢ ◡ ◡ 𝑆 = ( 𝑆 ∩ ( V × V ) ) |
| 18 |
16 17
|
eleqtrrdi |
⊢ ( 𝜑 → 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ ◡ ◡ 𝑆 ) |
| 19 |
|
funopfv |
⊢ ( Fun ◡ ◡ 𝑆 → ( 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ ◡ ◡ 𝑆 → ( ◡ ◡ 𝑆 ‘ ( 𝐸 ‘ ndx ) ) = 𝐶 ) ) |
| 20 |
3 18 19
|
sylc |
⊢ ( 𝜑 → ( ◡ ◡ 𝑆 ‘ ( 𝐸 ‘ ndx ) ) = 𝐶 ) |
| 21 |
12 20
|
eqtr3id |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) = 𝐶 ) |
| 22 |
6 21
|
eqtr2d |
⊢ ( 𝜑 → 𝐶 = ( 𝐸 ‘ 𝑆 ) ) |