Description: Variant on strfv for large structures. (Contributed by Mario Carneiro, 10-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | strfv3.u | ⊢ ( 𝜑 → 𝑈 = 𝑆 ) | |
strfv3.s | ⊢ 𝑆 Struct 𝑋 | ||
strfv3.e | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | ||
strfv3.n | ⊢ { 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 } ⊆ 𝑆 | ||
strfv3.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
strfv3.a | ⊢ 𝐴 = ( 𝐸 ‘ 𝑈 ) | ||
Assertion | strfv3 | ⊢ ( 𝜑 → 𝐴 = 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfv3.u | ⊢ ( 𝜑 → 𝑈 = 𝑆 ) | |
2 | strfv3.s | ⊢ 𝑆 Struct 𝑋 | |
3 | strfv3.e | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | |
4 | strfv3.n | ⊢ { 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 } ⊆ 𝑆 | |
5 | strfv3.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
6 | strfv3.a | ⊢ 𝐴 = ( 𝐸 ‘ 𝑈 ) | |
7 | 2 3 4 | strfv | ⊢ ( 𝐶 ∈ 𝑉 → 𝐶 = ( 𝐸 ‘ 𝑆 ) ) |
8 | 5 7 | syl | ⊢ ( 𝜑 → 𝐶 = ( 𝐸 ‘ 𝑆 ) ) |
9 | 1 | fveq2d | ⊢ ( 𝜑 → ( 𝐸 ‘ 𝑈 ) = ( 𝐸 ‘ 𝑆 ) ) |
10 | 8 9 | eqtr4d | ⊢ ( 𝜑 → 𝐶 = ( 𝐸 ‘ 𝑈 ) ) |
11 | 6 10 | eqtr4id | ⊢ ( 𝜑 → 𝐴 = 𝐶 ) |