Metamath Proof Explorer


Theorem strfv3

Description: Variant on strfv for large structures. (Contributed by Mario Carneiro, 10-Jan-2017)

Ref Expression
Hypotheses strfv3.u ( 𝜑𝑈 = 𝑆 )
strfv3.s 𝑆 Struct 𝑋
strfv3.e 𝐸 = Slot ( 𝐸 ‘ ndx )
strfv3.n { ⟨ ( 𝐸 ‘ ndx ) , 𝐶 ⟩ } ⊆ 𝑆
strfv3.c ( 𝜑𝐶𝑉 )
strfv3.a 𝐴 = ( 𝐸𝑈 )
Assertion strfv3 ( 𝜑𝐴 = 𝐶 )

Proof

Step Hyp Ref Expression
1 strfv3.u ( 𝜑𝑈 = 𝑆 )
2 strfv3.s 𝑆 Struct 𝑋
3 strfv3.e 𝐸 = Slot ( 𝐸 ‘ ndx )
4 strfv3.n { ⟨ ( 𝐸 ‘ ndx ) , 𝐶 ⟩ } ⊆ 𝑆
5 strfv3.c ( 𝜑𝐶𝑉 )
6 strfv3.a 𝐴 = ( 𝐸𝑈 )
7 2 3 4 strfv ( 𝐶𝑉𝐶 = ( 𝐸𝑆 ) )
8 5 7 syl ( 𝜑𝐶 = ( 𝐸𝑆 ) )
9 1 fveq2d ( 𝜑 → ( 𝐸𝑈 ) = ( 𝐸𝑆 ) )
10 8 9 eqtr4d ( 𝜑𝐶 = ( 𝐸𝑈 ) )
11 6 10 eqtr4id ( 𝜑𝐴 = 𝐶 )