Description: Deduction version of strfv . (Contributed by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | strfvd.e | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | |
| strfvd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| strfvd.f | ⊢ ( 𝜑 → Fun 𝑆 ) | ||
| strfvd.n | ⊢ ( 𝜑 → 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ 𝑆 ) | ||
| Assertion | strfvd | ⊢ ( 𝜑 → 𝐶 = ( 𝐸 ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfvd.e | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | |
| 2 | strfvd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 3 | strfvd.f | ⊢ ( 𝜑 → Fun 𝑆 ) | |
| 4 | strfvd.n | ⊢ ( 𝜑 → 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ 𝑆 ) | |
| 5 | 1 2 | strfvnd | ⊢ ( 𝜑 → ( 𝐸 ‘ 𝑆 ) = ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) ) |
| 6 | funopfv | ⊢ ( Fun 𝑆 → ( 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ 𝑆 → ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) = 𝐶 ) ) | |
| 7 | 3 4 6 | sylc | ⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) = 𝐶 ) |
| 8 | 5 7 | eqtr2d | ⊢ ( 𝜑 → 𝐶 = ( 𝐸 ‘ 𝑆 ) ) |