Metamath Proof Explorer


Theorem strfvd

Description: Deduction version of strfv . (Contributed by Mario Carneiro, 15-Nov-2014)

Ref Expression
Hypotheses strfvd.e 𝐸 = Slot ( 𝐸 ‘ ndx )
strfvd.s ( 𝜑𝑆𝑉 )
strfvd.f ( 𝜑 → Fun 𝑆 )
strfvd.n ( 𝜑 → ⟨ ( 𝐸 ‘ ndx ) , 𝐶 ⟩ ∈ 𝑆 )
Assertion strfvd ( 𝜑𝐶 = ( 𝐸𝑆 ) )

Proof

Step Hyp Ref Expression
1 strfvd.e 𝐸 = Slot ( 𝐸 ‘ ndx )
2 strfvd.s ( 𝜑𝑆𝑉 )
3 strfvd.f ( 𝜑 → Fun 𝑆 )
4 strfvd.n ( 𝜑 → ⟨ ( 𝐸 ‘ ndx ) , 𝐶 ⟩ ∈ 𝑆 )
5 1 2 strfvnd ( 𝜑 → ( 𝐸𝑆 ) = ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) )
6 funopfv ( Fun 𝑆 → ( ⟨ ( 𝐸 ‘ ndx ) , 𝐶 ⟩ ∈ 𝑆 → ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) = 𝐶 ) )
7 3 4 6 sylc ( 𝜑 → ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) = 𝐶 )
8 5 7 eqtr2d ( 𝜑𝐶 = ( 𝐸𝑆 ) )