Description: Deduction version of strfvn . (Contributed by Mario Carneiro, 15-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | strfvnd.c | ⊢ 𝐸 = Slot 𝑁 | |
strfvnd.f | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
Assertion | strfvnd | ⊢ ( 𝜑 → ( 𝐸 ‘ 𝑆 ) = ( 𝑆 ‘ 𝑁 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfvnd.c | ⊢ 𝐸 = Slot 𝑁 | |
2 | strfvnd.f | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
3 | elex | ⊢ ( 𝑆 ∈ 𝑉 → 𝑆 ∈ V ) | |
4 | fveq1 | ⊢ ( 𝑥 = 𝑆 → ( 𝑥 ‘ 𝑁 ) = ( 𝑆 ‘ 𝑁 ) ) | |
5 | df-slot | ⊢ Slot 𝑁 = ( 𝑥 ∈ V ↦ ( 𝑥 ‘ 𝑁 ) ) | |
6 | 1 5 | eqtri | ⊢ 𝐸 = ( 𝑥 ∈ V ↦ ( 𝑥 ‘ 𝑁 ) ) |
7 | fvex | ⊢ ( 𝑆 ‘ 𝑁 ) ∈ V | |
8 | 4 6 7 | fvmpt | ⊢ ( 𝑆 ∈ V → ( 𝐸 ‘ 𝑆 ) = ( 𝑆 ‘ 𝑁 ) ) |
9 | 2 3 8 | 3syl | ⊢ ( 𝜑 → ( 𝐸 ‘ 𝑆 ) = ( 𝑆 ‘ 𝑁 ) ) |