Metamath Proof Explorer


Theorem strfvnd

Description: Deduction version of strfvn . (Contributed by Mario Carneiro, 15-Nov-2014)

Ref Expression
Hypotheses strfvnd.c 𝐸 = Slot 𝑁
strfvnd.f ( 𝜑𝑆𝑉 )
Assertion strfvnd ( 𝜑 → ( 𝐸𝑆 ) = ( 𝑆𝑁 ) )

Proof

Step Hyp Ref Expression
1 strfvnd.c 𝐸 = Slot 𝑁
2 strfvnd.f ( 𝜑𝑆𝑉 )
3 elex ( 𝑆𝑉𝑆 ∈ V )
4 fveq1 ( 𝑥 = 𝑆 → ( 𝑥𝑁 ) = ( 𝑆𝑁 ) )
5 df-slot Slot 𝑁 = ( 𝑥 ∈ V ↦ ( 𝑥𝑁 ) )
6 1 5 eqtri 𝐸 = ( 𝑥 ∈ V ↦ ( 𝑥𝑁 ) )
7 fvex ( 𝑆𝑁 ) ∈ V
8 4 6 7 fvmpt ( 𝑆 ∈ V → ( 𝐸𝑆 ) = ( 𝑆𝑁 ) )
9 2 3 8 3syl ( 𝜑 → ( 𝐸𝑆 ) = ( 𝑆𝑁 ) )