Metamath Proof Explorer


Theorem strle3

Description: Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypotheses strle1.i 𝐼 ∈ ℕ
strle1.a 𝐴 = 𝐼
strle2.j 𝐼 < 𝐽
strle2.k 𝐽 ∈ ℕ
strle2.b 𝐵 = 𝐽
strle3.k 𝐽 < 𝐾
strle3.l 𝐾 ∈ ℕ
strle3.c 𝐶 = 𝐾
Assertion strle3 { ⟨ 𝐴 , 𝑋 ⟩ , ⟨ 𝐵 , 𝑌 ⟩ , ⟨ 𝐶 , 𝑍 ⟩ } Struct ⟨ 𝐼 , 𝐾

Proof

Step Hyp Ref Expression
1 strle1.i 𝐼 ∈ ℕ
2 strle1.a 𝐴 = 𝐼
3 strle2.j 𝐼 < 𝐽
4 strle2.k 𝐽 ∈ ℕ
5 strle2.b 𝐵 = 𝐽
6 strle3.k 𝐽 < 𝐾
7 strle3.l 𝐾 ∈ ℕ
8 strle3.c 𝐶 = 𝐾
9 df-tp { ⟨ 𝐴 , 𝑋 ⟩ , ⟨ 𝐵 , 𝑌 ⟩ , ⟨ 𝐶 , 𝑍 ⟩ } = ( { ⟨ 𝐴 , 𝑋 ⟩ , ⟨ 𝐵 , 𝑌 ⟩ } ∪ { ⟨ 𝐶 , 𝑍 ⟩ } )
10 1 2 3 4 5 strle2 { ⟨ 𝐴 , 𝑋 ⟩ , ⟨ 𝐵 , 𝑌 ⟩ } Struct ⟨ 𝐼 , 𝐽
11 7 8 strle1 { ⟨ 𝐶 , 𝑍 ⟩ } Struct ⟨ 𝐾 , 𝐾
12 10 11 6 strleun ( { ⟨ 𝐴 , 𝑋 ⟩ , ⟨ 𝐵 , 𝑌 ⟩ } ∪ { ⟨ 𝐶 , 𝑍 ⟩ } ) Struct ⟨ 𝐼 , 𝐾
13 9 12 eqbrtri { ⟨ 𝐴 , 𝑋 ⟩ , ⟨ 𝐵 , 𝑌 ⟩ , ⟨ 𝐶 , 𝑍 ⟩ } Struct ⟨ 𝐼 , 𝐾