| Step |
Hyp |
Ref |
Expression |
| 1 |
|
strlem3.1 |
⊢ 𝑆 = ( 𝑥 ∈ Cℋ ↦ ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 ) ) |
| 2 |
|
strlem3.2 |
⊢ ( 𝜑 ↔ ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( normℎ ‘ 𝑢 ) = 1 ) ) |
| 3 |
|
strlem3.3 |
⊢ 𝐴 ∈ Cℋ |
| 4 |
|
strlem3.4 |
⊢ 𝐵 ∈ Cℋ |
| 5 |
1 2 3 4
|
strlem4 |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = 1 ) |
| 6 |
1 2 3 4
|
strlem3 |
⊢ ( 𝜑 → 𝑆 ∈ States ) |
| 7 |
|
stcl |
⊢ ( 𝑆 ∈ States → ( 𝐵 ∈ Cℋ → ( 𝑆 ‘ 𝐵 ) ∈ ℝ ) ) |
| 8 |
6 4 7
|
mpisyl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) ∈ ℝ ) |
| 9 |
1 2 3 4
|
strlem5 |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) < 1 ) |
| 10 |
8 9
|
ltned |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) ≠ 1 ) |
| 11 |
10
|
neneqd |
⊢ ( 𝜑 → ¬ ( 𝑆 ‘ 𝐵 ) = 1 ) |
| 12 |
5 11
|
jcnd |
⊢ ( 𝜑 → ¬ ( ( 𝑆 ‘ 𝐴 ) = 1 → ( 𝑆 ‘ 𝐵 ) = 1 ) ) |