Step |
Hyp |
Ref |
Expression |
1 |
|
strleun.f |
⊢ 𝐹 Struct 〈 𝐴 , 𝐵 〉 |
2 |
|
strleun.g |
⊢ 𝐺 Struct 〈 𝐶 , 𝐷 〉 |
3 |
|
strleun.l |
⊢ 𝐵 < 𝐶 |
4 |
|
isstruct |
⊢ ( 𝐹 Struct 〈 𝐴 , 𝐵 〉 ↔ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵 ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( 𝐴 ... 𝐵 ) ) ) |
5 |
1 4
|
mpbi |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵 ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( 𝐴 ... 𝐵 ) ) |
6 |
5
|
simp1i |
⊢ ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵 ) |
7 |
6
|
simp1i |
⊢ 𝐴 ∈ ℕ |
8 |
|
isstruct |
⊢ ( 𝐺 Struct 〈 𝐶 , 𝐷 〉 ↔ ( ( 𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶 ≤ 𝐷 ) ∧ Fun ( 𝐺 ∖ { ∅ } ) ∧ dom 𝐺 ⊆ ( 𝐶 ... 𝐷 ) ) ) |
9 |
2 8
|
mpbi |
⊢ ( ( 𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶 ≤ 𝐷 ) ∧ Fun ( 𝐺 ∖ { ∅ } ) ∧ dom 𝐺 ⊆ ( 𝐶 ... 𝐷 ) ) |
10 |
9
|
simp1i |
⊢ ( 𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶 ≤ 𝐷 ) |
11 |
10
|
simp2i |
⊢ 𝐷 ∈ ℕ |
12 |
6
|
simp3i |
⊢ 𝐴 ≤ 𝐵 |
13 |
6
|
simp2i |
⊢ 𝐵 ∈ ℕ |
14 |
13
|
nnrei |
⊢ 𝐵 ∈ ℝ |
15 |
10
|
simp1i |
⊢ 𝐶 ∈ ℕ |
16 |
15
|
nnrei |
⊢ 𝐶 ∈ ℝ |
17 |
14 16 3
|
ltleii |
⊢ 𝐵 ≤ 𝐶 |
18 |
7
|
nnrei |
⊢ 𝐴 ∈ ℝ |
19 |
18 14 16
|
letri |
⊢ ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) → 𝐴 ≤ 𝐶 ) |
20 |
12 17 19
|
mp2an |
⊢ 𝐴 ≤ 𝐶 |
21 |
10
|
simp3i |
⊢ 𝐶 ≤ 𝐷 |
22 |
11
|
nnrei |
⊢ 𝐷 ∈ ℝ |
23 |
18 16 22
|
letri |
⊢ ( ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐷 ) → 𝐴 ≤ 𝐷 ) |
24 |
20 21 23
|
mp2an |
⊢ 𝐴 ≤ 𝐷 |
25 |
7 11 24
|
3pm3.2i |
⊢ ( 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴 ≤ 𝐷 ) |
26 |
5
|
simp2i |
⊢ Fun ( 𝐹 ∖ { ∅ } ) |
27 |
9
|
simp2i |
⊢ Fun ( 𝐺 ∖ { ∅ } ) |
28 |
26 27
|
pm3.2i |
⊢ ( Fun ( 𝐹 ∖ { ∅ } ) ∧ Fun ( 𝐺 ∖ { ∅ } ) ) |
29 |
|
difss |
⊢ ( 𝐹 ∖ { ∅ } ) ⊆ 𝐹 |
30 |
|
dmss |
⊢ ( ( 𝐹 ∖ { ∅ } ) ⊆ 𝐹 → dom ( 𝐹 ∖ { ∅ } ) ⊆ dom 𝐹 ) |
31 |
29 30
|
ax-mp |
⊢ dom ( 𝐹 ∖ { ∅ } ) ⊆ dom 𝐹 |
32 |
5
|
simp3i |
⊢ dom 𝐹 ⊆ ( 𝐴 ... 𝐵 ) |
33 |
31 32
|
sstri |
⊢ dom ( 𝐹 ∖ { ∅ } ) ⊆ ( 𝐴 ... 𝐵 ) |
34 |
|
difss |
⊢ ( 𝐺 ∖ { ∅ } ) ⊆ 𝐺 |
35 |
|
dmss |
⊢ ( ( 𝐺 ∖ { ∅ } ) ⊆ 𝐺 → dom ( 𝐺 ∖ { ∅ } ) ⊆ dom 𝐺 ) |
36 |
34 35
|
ax-mp |
⊢ dom ( 𝐺 ∖ { ∅ } ) ⊆ dom 𝐺 |
37 |
9
|
simp3i |
⊢ dom 𝐺 ⊆ ( 𝐶 ... 𝐷 ) |
38 |
36 37
|
sstri |
⊢ dom ( 𝐺 ∖ { ∅ } ) ⊆ ( 𝐶 ... 𝐷 ) |
39 |
|
ss2in |
⊢ ( ( dom ( 𝐹 ∖ { ∅ } ) ⊆ ( 𝐴 ... 𝐵 ) ∧ dom ( 𝐺 ∖ { ∅ } ) ⊆ ( 𝐶 ... 𝐷 ) ) → ( dom ( 𝐹 ∖ { ∅ } ) ∩ dom ( 𝐺 ∖ { ∅ } ) ) ⊆ ( ( 𝐴 ... 𝐵 ) ∩ ( 𝐶 ... 𝐷 ) ) ) |
40 |
33 38 39
|
mp2an |
⊢ ( dom ( 𝐹 ∖ { ∅ } ) ∩ dom ( 𝐺 ∖ { ∅ } ) ) ⊆ ( ( 𝐴 ... 𝐵 ) ∩ ( 𝐶 ... 𝐷 ) ) |
41 |
|
fzdisj |
⊢ ( 𝐵 < 𝐶 → ( ( 𝐴 ... 𝐵 ) ∩ ( 𝐶 ... 𝐷 ) ) = ∅ ) |
42 |
3 41
|
ax-mp |
⊢ ( ( 𝐴 ... 𝐵 ) ∩ ( 𝐶 ... 𝐷 ) ) = ∅ |
43 |
|
sseq0 |
⊢ ( ( ( dom ( 𝐹 ∖ { ∅ } ) ∩ dom ( 𝐺 ∖ { ∅ } ) ) ⊆ ( ( 𝐴 ... 𝐵 ) ∩ ( 𝐶 ... 𝐷 ) ) ∧ ( ( 𝐴 ... 𝐵 ) ∩ ( 𝐶 ... 𝐷 ) ) = ∅ ) → ( dom ( 𝐹 ∖ { ∅ } ) ∩ dom ( 𝐺 ∖ { ∅ } ) ) = ∅ ) |
44 |
40 42 43
|
mp2an |
⊢ ( dom ( 𝐹 ∖ { ∅ } ) ∩ dom ( 𝐺 ∖ { ∅ } ) ) = ∅ |
45 |
|
funun |
⊢ ( ( ( Fun ( 𝐹 ∖ { ∅ } ) ∧ Fun ( 𝐺 ∖ { ∅ } ) ) ∧ ( dom ( 𝐹 ∖ { ∅ } ) ∩ dom ( 𝐺 ∖ { ∅ } ) ) = ∅ ) → Fun ( ( 𝐹 ∖ { ∅ } ) ∪ ( 𝐺 ∖ { ∅ } ) ) ) |
46 |
28 44 45
|
mp2an |
⊢ Fun ( ( 𝐹 ∖ { ∅ } ) ∪ ( 𝐺 ∖ { ∅ } ) ) |
47 |
|
difundir |
⊢ ( ( 𝐹 ∪ 𝐺 ) ∖ { ∅ } ) = ( ( 𝐹 ∖ { ∅ } ) ∪ ( 𝐺 ∖ { ∅ } ) ) |
48 |
47
|
funeqi |
⊢ ( Fun ( ( 𝐹 ∪ 𝐺 ) ∖ { ∅ } ) ↔ Fun ( ( 𝐹 ∖ { ∅ } ) ∪ ( 𝐺 ∖ { ∅ } ) ) ) |
49 |
46 48
|
mpbir |
⊢ Fun ( ( 𝐹 ∪ 𝐺 ) ∖ { ∅ } ) |
50 |
|
dmun |
⊢ dom ( 𝐹 ∪ 𝐺 ) = ( dom 𝐹 ∪ dom 𝐺 ) |
51 |
13
|
nnzi |
⊢ 𝐵 ∈ ℤ |
52 |
11
|
nnzi |
⊢ 𝐷 ∈ ℤ |
53 |
14 16 22
|
letri |
⊢ ( ( 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐷 ) → 𝐵 ≤ 𝐷 ) |
54 |
17 21 53
|
mp2an |
⊢ 𝐵 ≤ 𝐷 |
55 |
|
eluz2 |
⊢ ( 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ↔ ( 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐵 ≤ 𝐷 ) ) |
56 |
51 52 54 55
|
mpbir3an |
⊢ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) |
57 |
|
fzss2 |
⊢ ( 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) → ( 𝐴 ... 𝐵 ) ⊆ ( 𝐴 ... 𝐷 ) ) |
58 |
56 57
|
ax-mp |
⊢ ( 𝐴 ... 𝐵 ) ⊆ ( 𝐴 ... 𝐷 ) |
59 |
32 58
|
sstri |
⊢ dom 𝐹 ⊆ ( 𝐴 ... 𝐷 ) |
60 |
7
|
nnzi |
⊢ 𝐴 ∈ ℤ |
61 |
15
|
nnzi |
⊢ 𝐶 ∈ ℤ |
62 |
|
eluz2 |
⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ↔ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) |
63 |
60 61 20 62
|
mpbir3an |
⊢ 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) |
64 |
|
fzss1 |
⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐶 ... 𝐷 ) ⊆ ( 𝐴 ... 𝐷 ) ) |
65 |
63 64
|
ax-mp |
⊢ ( 𝐶 ... 𝐷 ) ⊆ ( 𝐴 ... 𝐷 ) |
66 |
37 65
|
sstri |
⊢ dom 𝐺 ⊆ ( 𝐴 ... 𝐷 ) |
67 |
59 66
|
unssi |
⊢ ( dom 𝐹 ∪ dom 𝐺 ) ⊆ ( 𝐴 ... 𝐷 ) |
68 |
50 67
|
eqsstri |
⊢ dom ( 𝐹 ∪ 𝐺 ) ⊆ ( 𝐴 ... 𝐷 ) |
69 |
|
isstruct |
⊢ ( ( 𝐹 ∪ 𝐺 ) Struct 〈 𝐴 , 𝐷 〉 ↔ ( ( 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴 ≤ 𝐷 ) ∧ Fun ( ( 𝐹 ∪ 𝐺 ) ∖ { ∅ } ) ∧ dom ( 𝐹 ∪ 𝐺 ) ⊆ ( 𝐴 ... 𝐷 ) ) ) |
70 |
25 49 68 69
|
mpbir3an |
⊢ ( 𝐹 ∪ 𝐺 ) Struct 〈 𝐴 , 𝐷 〉 |