Metamath Proof Explorer


Theorem strov2rcl

Description: Partial reverse closure for any structure defined as a two-argument function. (Contributed by Stefan O'Rear, 27-Mar-2015) (Proof shortened by AV, 2-Dec-2019)

Ref Expression
Hypotheses strov2rcl.s 𝑆 = ( 𝐼 𝐹 𝑅 )
strov2rcl.b 𝐵 = ( Base ‘ 𝑆 )
strov2rcl.f Rel dom 𝐹
Assertion strov2rcl ( 𝑋𝐵𝐼 ∈ V )

Proof

Step Hyp Ref Expression
1 strov2rcl.s 𝑆 = ( 𝐼 𝐹 𝑅 )
2 strov2rcl.b 𝐵 = ( Base ‘ 𝑆 )
3 strov2rcl.f Rel dom 𝐹
4 3 1 2 elbasov ( 𝑋𝐵 → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) )
5 4 simpld ( 𝑋𝐵𝐼 ∈ V )