Metamath Proof Explorer


Theorem strss

Description: Propagate component extraction to a structure T from a subset structure S . (Contributed by Mario Carneiro, 11-Oct-2013) (Revised by Mario Carneiro, 15-Jan-2014)

Ref Expression
Hypotheses strss.t 𝑇 ∈ V
strss.f Fun 𝑇
strss.s 𝑆𝑇
strss.e 𝐸 = Slot ( 𝐸 ‘ ndx )
strss.n ⟨ ( 𝐸 ‘ ndx ) , 𝐶 ⟩ ∈ 𝑆
Assertion strss ( 𝐸𝑇 ) = ( 𝐸𝑆 )

Proof

Step Hyp Ref Expression
1 strss.t 𝑇 ∈ V
2 strss.f Fun 𝑇
3 strss.s 𝑆𝑇
4 strss.e 𝐸 = Slot ( 𝐸 ‘ ndx )
5 strss.n ⟨ ( 𝐸 ‘ ndx ) , 𝐶 ⟩ ∈ 𝑆
6 1 a1i ( ⊤ → 𝑇 ∈ V )
7 2 a1i ( ⊤ → Fun 𝑇 )
8 3 a1i ( ⊤ → 𝑆𝑇 )
9 5 a1i ( ⊤ → ⟨ ( 𝐸 ‘ ndx ) , 𝐶 ⟩ ∈ 𝑆 )
10 4 6 7 8 9 strssd ( ⊤ → ( 𝐸𝑇 ) = ( 𝐸𝑆 ) )
11 10 mptru ( 𝐸𝑇 ) = ( 𝐸𝑆 )