Database
BASIC STRUCTURES
Extensible structures
Basic definitions
Structure component indices
strss
Metamath Proof Explorer
Description: Propagate component extraction to a structure T from a subset
structure S . (Contributed by Mario Carneiro , 11-Oct-2013)
(Revised by Mario Carneiro , 15-Jan-2014)
Ref
Expression
Hypotheses
strss.t
⊢ 𝑇 ∈ V
strss.f
⊢ Fun 𝑇
strss.s
⊢ 𝑆 ⊆ 𝑇
strss.e
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx )
strss.n
⊢ 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ 𝑆
Assertion
strss
⊢ ( 𝐸 ‘ 𝑇 ) = ( 𝐸 ‘ 𝑆 )
Proof
Step
Hyp
Ref
Expression
1
strss.t
⊢ 𝑇 ∈ V
2
strss.f
⊢ Fun 𝑇
3
strss.s
⊢ 𝑆 ⊆ 𝑇
4
strss.e
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx )
5
strss.n
⊢ 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ 𝑆
6
1
a1i
⊢ ( ⊤ → 𝑇 ∈ V )
7
2
a1i
⊢ ( ⊤ → Fun 𝑇 )
8
3
a1i
⊢ ( ⊤ → 𝑆 ⊆ 𝑇 )
9
5
a1i
⊢ ( ⊤ → 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ 𝑆 )
10
4 6 7 8 9
strssd
⊢ ( ⊤ → ( 𝐸 ‘ 𝑇 ) = ( 𝐸 ‘ 𝑆 ) )
11
10
mptru
⊢ ( 𝐸 ‘ 𝑇 ) = ( 𝐸 ‘ 𝑆 )