Metamath Proof Explorer


Theorem strssd

Description: Deduction version of strss . (Contributed by Mario Carneiro, 15-Nov-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses strssd.e 𝐸 = Slot ( 𝐸 ‘ ndx )
strssd.t ( 𝜑𝑇𝑉 )
strssd.f ( 𝜑 → Fun 𝑇 )
strssd.s ( 𝜑𝑆𝑇 )
strssd.n ( 𝜑 → ⟨ ( 𝐸 ‘ ndx ) , 𝐶 ⟩ ∈ 𝑆 )
Assertion strssd ( 𝜑 → ( 𝐸𝑇 ) = ( 𝐸𝑆 ) )

Proof

Step Hyp Ref Expression
1 strssd.e 𝐸 = Slot ( 𝐸 ‘ ndx )
2 strssd.t ( 𝜑𝑇𝑉 )
3 strssd.f ( 𝜑 → Fun 𝑇 )
4 strssd.s ( 𝜑𝑆𝑇 )
5 strssd.n ( 𝜑 → ⟨ ( 𝐸 ‘ ndx ) , 𝐶 ⟩ ∈ 𝑆 )
6 4 5 sseldd ( 𝜑 → ⟨ ( 𝐸 ‘ ndx ) , 𝐶 ⟩ ∈ 𝑇 )
7 1 2 3 6 strfvd ( 𝜑𝐶 = ( 𝐸𝑇 ) )
8 2 4 ssexd ( 𝜑𝑆 ∈ V )
9 funss ( 𝑆𝑇 → ( Fun 𝑇 → Fun 𝑆 ) )
10 4 3 9 sylc ( 𝜑 → Fun 𝑆 )
11 1 8 10 5 strfvd ( 𝜑𝐶 = ( 𝐸𝑆 ) )
12 7 11 eqtr3d ( 𝜑 → ( 𝐸𝑇 ) = ( 𝐸𝑆 ) )