Description: Deduction version of strss . (Contributed by Mario Carneiro, 15-Nov-2014) (Revised by Mario Carneiro, 30-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | strssd.e | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | |
strssd.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) | ||
strssd.f | ⊢ ( 𝜑 → Fun 𝑇 ) | ||
strssd.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑇 ) | ||
strssd.n | ⊢ ( 𝜑 → 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ 𝑆 ) | ||
Assertion | strssd | ⊢ ( 𝜑 → ( 𝐸 ‘ 𝑇 ) = ( 𝐸 ‘ 𝑆 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strssd.e | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | |
2 | strssd.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) | |
3 | strssd.f | ⊢ ( 𝜑 → Fun 𝑇 ) | |
4 | strssd.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑇 ) | |
5 | strssd.n | ⊢ ( 𝜑 → 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ 𝑆 ) | |
6 | 4 5 | sseldd | ⊢ ( 𝜑 → 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ 𝑇 ) |
7 | 1 2 3 6 | strfvd | ⊢ ( 𝜑 → 𝐶 = ( 𝐸 ‘ 𝑇 ) ) |
8 | 2 4 | ssexd | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
9 | funss | ⊢ ( 𝑆 ⊆ 𝑇 → ( Fun 𝑇 → Fun 𝑆 ) ) | |
10 | 4 3 9 | sylc | ⊢ ( 𝜑 → Fun 𝑆 ) |
11 | 1 8 10 5 | strfvd | ⊢ ( 𝜑 → 𝐶 = ( 𝐸 ‘ 𝑆 ) ) |
12 | 7 11 | eqtr3d | ⊢ ( 𝜑 → ( 𝐸 ‘ 𝑇 ) = ( 𝐸 ‘ 𝑆 ) ) |