Step |
Hyp |
Ref |
Expression |
1 |
|
0nelxp |
⊢ ¬ ∅ ∈ ( V × V ) |
2 |
|
cnvcnv |
⊢ ◡ ◡ 𝐹 = ( 𝐹 ∩ ( V × V ) ) |
3 |
|
inss2 |
⊢ ( 𝐹 ∩ ( V × V ) ) ⊆ ( V × V ) |
4 |
2 3
|
eqsstri |
⊢ ◡ ◡ 𝐹 ⊆ ( V × V ) |
5 |
4
|
sseli |
⊢ ( ∅ ∈ ◡ ◡ 𝐹 → ∅ ∈ ( V × V ) ) |
6 |
1 5
|
mto |
⊢ ¬ ∅ ∈ ◡ ◡ 𝐹 |
7 |
|
disjsn |
⊢ ( ( ◡ ◡ 𝐹 ∩ { ∅ } ) = ∅ ↔ ¬ ∅ ∈ ◡ ◡ 𝐹 ) |
8 |
6 7
|
mpbir |
⊢ ( ◡ ◡ 𝐹 ∩ { ∅ } ) = ∅ |
9 |
|
cnvcnvss |
⊢ ◡ ◡ 𝐹 ⊆ 𝐹 |
10 |
|
reldisj |
⊢ ( ◡ ◡ 𝐹 ⊆ 𝐹 → ( ( ◡ ◡ 𝐹 ∩ { ∅ } ) = ∅ ↔ ◡ ◡ 𝐹 ⊆ ( 𝐹 ∖ { ∅ } ) ) ) |
11 |
9 10
|
ax-mp |
⊢ ( ( ◡ ◡ 𝐹 ∩ { ∅ } ) = ∅ ↔ ◡ ◡ 𝐹 ⊆ ( 𝐹 ∖ { ∅ } ) ) |
12 |
8 11
|
mpbi |
⊢ ◡ ◡ 𝐹 ⊆ ( 𝐹 ∖ { ∅ } ) |
13 |
12
|
a1i |
⊢ ( 𝐹 Struct 𝑋 → ◡ ◡ 𝐹 ⊆ ( 𝐹 ∖ { ∅ } ) ) |
14 |
|
structn0fun |
⊢ ( 𝐹 Struct 𝑋 → Fun ( 𝐹 ∖ { ∅ } ) ) |
15 |
|
funrel |
⊢ ( Fun ( 𝐹 ∖ { ∅ } ) → Rel ( 𝐹 ∖ { ∅ } ) ) |
16 |
14 15
|
syl |
⊢ ( 𝐹 Struct 𝑋 → Rel ( 𝐹 ∖ { ∅ } ) ) |
17 |
|
dfrel2 |
⊢ ( Rel ( 𝐹 ∖ { ∅ } ) ↔ ◡ ◡ ( 𝐹 ∖ { ∅ } ) = ( 𝐹 ∖ { ∅ } ) ) |
18 |
16 17
|
sylib |
⊢ ( 𝐹 Struct 𝑋 → ◡ ◡ ( 𝐹 ∖ { ∅ } ) = ( 𝐹 ∖ { ∅ } ) ) |
19 |
|
difss |
⊢ ( 𝐹 ∖ { ∅ } ) ⊆ 𝐹 |
20 |
|
cnvss |
⊢ ( ( 𝐹 ∖ { ∅ } ) ⊆ 𝐹 → ◡ ( 𝐹 ∖ { ∅ } ) ⊆ ◡ 𝐹 ) |
21 |
|
cnvss |
⊢ ( ◡ ( 𝐹 ∖ { ∅ } ) ⊆ ◡ 𝐹 → ◡ ◡ ( 𝐹 ∖ { ∅ } ) ⊆ ◡ ◡ 𝐹 ) |
22 |
19 20 21
|
mp2b |
⊢ ◡ ◡ ( 𝐹 ∖ { ∅ } ) ⊆ ◡ ◡ 𝐹 |
23 |
18 22
|
eqsstrrdi |
⊢ ( 𝐹 Struct 𝑋 → ( 𝐹 ∖ { ∅ } ) ⊆ ◡ ◡ 𝐹 ) |
24 |
13 23
|
eqssd |
⊢ ( 𝐹 Struct 𝑋 → ◡ ◡ 𝐹 = ( 𝐹 ∖ { ∅ } ) ) |