Step |
Hyp |
Ref |
Expression |
1 |
|
structfn.1 |
⊢ 𝐹 Struct 〈 𝑀 , 𝑁 〉 |
2 |
1
|
structfun |
⊢ Fun ◡ ◡ 𝐹 |
3 |
|
isstruct |
⊢ ( 𝐹 Struct 〈 𝑀 , 𝑁 〉 ↔ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( 𝑀 ... 𝑁 ) ) ) |
4 |
1 3
|
mpbi |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( 𝑀 ... 𝑁 ) ) |
5 |
4
|
simp3i |
⊢ dom 𝐹 ⊆ ( 𝑀 ... 𝑁 ) |
6 |
4
|
simp1i |
⊢ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) |
7 |
6
|
simp1i |
⊢ 𝑀 ∈ ℕ |
8 |
|
elnnuz |
⊢ ( 𝑀 ∈ ℕ ↔ 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
9 |
7 8
|
mpbi |
⊢ 𝑀 ∈ ( ℤ≥ ‘ 1 ) |
10 |
|
fzss1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑀 ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) ) |
11 |
9 10
|
ax-mp |
⊢ ( 𝑀 ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) |
12 |
5 11
|
sstri |
⊢ dom 𝐹 ⊆ ( 1 ... 𝑁 ) |
13 |
2 12
|
pm3.2i |
⊢ ( Fun ◡ ◡ 𝐹 ∧ dom 𝐹 ⊆ ( 1 ... 𝑁 ) ) |