Step |
Hyp |
Ref |
Expression |
1 |
|
structtousgr.p |
⊢ 𝑃 = { 𝑥 ∈ 𝒫 ( Base ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } |
2 |
|
structtousgr.s |
⊢ ( 𝜑 → 𝑆 Struct 𝑋 ) |
3 |
|
structtousgr.g |
⊢ 𝐺 = ( 𝑆 sSet 〈 ( .ef ‘ ndx ) , ( I ↾ 𝑃 ) 〉 ) |
4 |
|
structtousgr.b |
⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ dom 𝑆 ) |
5 |
1 2 3 4
|
structtousgr |
⊢ ( 𝜑 → 𝐺 ∈ USGraph ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) |
7 |
|
eldifi |
⊢ ( 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) → 𝑛 ∈ ( Vtx ‘ 𝐺 ) ) |
8 |
6 7
|
anim12ci |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) ) → ( 𝑛 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) ) |
9 |
|
eldifsni |
⊢ ( 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) → 𝑛 ≠ 𝑣 ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) ) → 𝑛 ≠ 𝑣 ) |
11 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) ) → ( Base ‘ 𝑆 ) ∈ V ) |
12 |
3
|
fveq2i |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ ( 𝑆 sSet 〈 ( .ef ‘ ndx ) , ( I ↾ 𝑃 ) 〉 ) ) |
13 |
|
eqid |
⊢ ( .ef ‘ ndx ) = ( .ef ‘ ndx ) |
14 |
|
fvex |
⊢ ( Base ‘ 𝑆 ) ∈ V |
15 |
1
|
cusgrexilem1 |
⊢ ( ( Base ‘ 𝑆 ) ∈ V → ( I ↾ 𝑃 ) ∈ V ) |
16 |
14 15
|
mp1i |
⊢ ( 𝜑 → ( I ↾ 𝑃 ) ∈ V ) |
17 |
13 2 4 16
|
setsvtx |
⊢ ( 𝜑 → ( Vtx ‘ ( 𝑆 sSet 〈 ( .ef ‘ ndx ) , ( I ↾ 𝑃 ) 〉 ) ) = ( Base ‘ 𝑆 ) ) |
18 |
12 17
|
eqtrid |
⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = ( Base ‘ 𝑆 ) ) |
19 |
18
|
eleq2d |
⊢ ( 𝜑 → ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) ↔ 𝑣 ∈ ( Base ‘ 𝑆 ) ) ) |
20 |
19
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑣 ∈ ( Base ‘ 𝑆 ) ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) ) → 𝑣 ∈ ( Base ‘ 𝑆 ) ) |
22 |
18
|
difeq1d |
⊢ ( 𝜑 → ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) = ( ( Base ‘ 𝑆 ) ∖ { 𝑣 } ) ) |
23 |
22
|
eleq2d |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) ↔ 𝑛 ∈ ( ( Base ‘ 𝑆 ) ∖ { 𝑣 } ) ) ) |
24 |
23
|
biimpd |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) → 𝑛 ∈ ( ( Base ‘ 𝑆 ) ∖ { 𝑣 } ) ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) → 𝑛 ∈ ( ( Base ‘ 𝑆 ) ∖ { 𝑣 } ) ) ) |
26 |
25
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) ) → 𝑛 ∈ ( ( Base ‘ 𝑆 ) ∖ { 𝑣 } ) ) |
27 |
1
|
cusgrexilem2 |
⊢ ( ( ( ( Base ‘ 𝑆 ) ∈ V ∧ 𝑣 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑛 ∈ ( ( Base ‘ 𝑆 ) ∖ { 𝑣 } ) ) → ∃ 𝑒 ∈ ran ( I ↾ 𝑃 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ) |
28 |
11 21 26 27
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) ) → ∃ 𝑒 ∈ ran ( I ↾ 𝑃 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ) |
29 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
30 |
3
|
fveq2i |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ ( 𝑆 sSet 〈 ( .ef ‘ ndx ) , ( I ↾ 𝑃 ) 〉 ) ) |
31 |
13 2 4 16
|
setsiedg |
⊢ ( 𝜑 → ( iEdg ‘ ( 𝑆 sSet 〈 ( .ef ‘ ndx ) , ( I ↾ 𝑃 ) 〉 ) ) = ( I ↾ 𝑃 ) ) |
32 |
30 31
|
eqtrid |
⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = ( I ↾ 𝑃 ) ) |
33 |
32
|
rneqd |
⊢ ( 𝜑 → ran ( iEdg ‘ 𝐺 ) = ran ( I ↾ 𝑃 ) ) |
34 |
29 33
|
eqtrid |
⊢ ( 𝜑 → ( Edg ‘ 𝐺 ) = ran ( I ↾ 𝑃 ) ) |
35 |
34
|
rexeqdv |
⊢ ( 𝜑 → ( ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ↔ ∃ 𝑒 ∈ ran ( I ↾ 𝑃 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ) ) |
36 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) ) → ( ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ↔ ∃ 𝑒 ∈ ran ( I ↾ 𝑃 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ) ) |
37 |
28 36
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ) |
38 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
39 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
40 |
38 39
|
nbgrel |
⊢ ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ( ( 𝑛 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑛 ≠ 𝑣 ∧ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ) ) |
41 |
8 10 37 40
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) ) → 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) |
42 |
41
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) |
43 |
38
|
uvtxel |
⊢ ( 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ↔ ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
44 |
6 42 43
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) |
45 |
44
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) |
46 |
5
|
elexd |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
47 |
38
|
iscplgr |
⊢ ( 𝐺 ∈ V → ( 𝐺 ∈ ComplGraph ↔ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) ) |
48 |
46 47
|
syl |
⊢ ( 𝜑 → ( 𝐺 ∈ ComplGraph ↔ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) ) |
49 |
45 48
|
mpbird |
⊢ ( 𝜑 → 𝐺 ∈ ComplGraph ) |
50 |
|
iscusgr |
⊢ ( 𝐺 ∈ ComplUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ) |
51 |
5 49 50
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 ∈ ComplUSGraph ) |