Step |
Hyp |
Ref |
Expression |
1 |
|
structtousgr.p |
⊢ 𝑃 = { 𝑥 ∈ 𝒫 ( Base ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } |
2 |
|
structtousgr.s |
⊢ ( 𝜑 → 𝑆 Struct 𝑋 ) |
3 |
|
structtousgr.g |
⊢ 𝐺 = ( 𝑆 sSet 〈 ( .ef ‘ ndx ) , ( I ↾ 𝑃 ) 〉 ) |
4 |
|
structtousgr.b |
⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ dom 𝑆 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
6 |
|
eqid |
⊢ ( .ef ‘ ndx ) = ( .ef ‘ ndx ) |
7 |
|
fvex |
⊢ ( Base ‘ 𝑆 ) ∈ V |
8 |
1
|
cusgrexilem1 |
⊢ ( ( Base ‘ 𝑆 ) ∈ V → ( I ↾ 𝑃 ) ∈ V ) |
9 |
7 8
|
mp1i |
⊢ ( 𝜑 → ( I ↾ 𝑃 ) ∈ V ) |
10 |
1
|
usgrexilem |
⊢ ( ( Base ‘ 𝑆 ) ∈ V → ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ { 𝑥 ∈ 𝒫 ( Base ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
11 |
7 10
|
mp1i |
⊢ ( 𝜑 → ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ { 𝑥 ∈ 𝒫 ( Base ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
12 |
5 6 2 4 9 11
|
usgrstrrepe |
⊢ ( 𝜑 → ( 𝑆 sSet 〈 ( .ef ‘ ndx ) , ( I ↾ 𝑃 ) 〉 ) ∈ USGraph ) |
13 |
3 12
|
eqeltrid |
⊢ ( 𝜑 → 𝐺 ∈ USGraph ) |