Metamath Proof Explorer


Theorem structvtxvallem

Description: Lemma for structvtxval and structiedg0val . (Contributed by AV, 23-Sep-2020) (Revised by AV, 12-Nov-2021)

Ref Expression
Hypotheses structvtxvallem.s 𝑆 ∈ ℕ
structvtxvallem.b ( Base ‘ ndx ) < 𝑆
structvtxvallem.g 𝐺 = { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ , ⟨ 𝑆 , 𝐸 ⟩ }
Assertion structvtxvallem ( ( 𝑉𝑋𝐸𝑌 ) → 2 ≤ ( ♯ ‘ dom 𝐺 ) )

Proof

Step Hyp Ref Expression
1 structvtxvallem.s 𝑆 ∈ ℕ
2 structvtxvallem.b ( Base ‘ ndx ) < 𝑆
3 structvtxvallem.g 𝐺 = { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ , ⟨ 𝑆 , 𝐸 ⟩ }
4 fvexd ( ( 𝑉𝑋𝐸𝑌 ) → ( Base ‘ ndx ) ∈ V )
5 1 a1i ( ( 𝑉𝑋𝐸𝑌 ) → 𝑆 ∈ ℕ )
6 simpl ( ( 𝑉𝑋𝐸𝑌 ) → 𝑉𝑋 )
7 simpr ( ( 𝑉𝑋𝐸𝑌 ) → 𝐸𝑌 )
8 prex { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ , ⟨ 𝑆 , 𝐸 ⟩ } ∈ V
9 3 8 eqeltri 𝐺 ∈ V
10 9 a1i ( ( 𝑉𝑋𝐸𝑌 ) → 𝐺 ∈ V )
11 basendxnn ( Base ‘ ndx ) ∈ ℕ
12 11 nnrei ( Base ‘ ndx ) ∈ ℝ
13 12 2 ltneii ( Base ‘ ndx ) ≠ 𝑆
14 13 a1i ( ( 𝑉𝑋𝐸𝑌 ) → ( Base ‘ ndx ) ≠ 𝑆 )
15 3 eqimss2i { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ , ⟨ 𝑆 , 𝐸 ⟩ } ⊆ 𝐺
16 15 a1i ( ( 𝑉𝑋𝐸𝑌 ) → { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ , ⟨ 𝑆 , 𝐸 ⟩ } ⊆ 𝐺 )
17 4 5 6 7 10 14 16 hashdmpropge2 ( ( 𝑉𝑋𝐸𝑌 ) → 2 ≤ ( ♯ ‘ dom 𝐺 ) )