Step |
Hyp |
Ref |
Expression |
1 |
|
sub1cncf.1 |
⊢ 𝐹 = ( 𝑥 ∈ ℂ ↦ ( 𝑥 − 𝐴 ) ) |
2 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
3 |
2
|
subcn |
⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
4 |
3
|
a1i |
⊢ ( 𝐴 ∈ ℂ → − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
5 |
|
eqid |
⊢ ( 𝑥 ∈ ℂ ↦ 𝑥 ) = ( 𝑥 ∈ ℂ ↦ 𝑥 ) |
6 |
5
|
idcncf |
⊢ ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ℂ –cn→ ℂ ) |
7 |
6
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ℂ –cn→ ℂ ) ) |
8 |
|
ssid |
⊢ ℂ ⊆ ℂ |
9 |
|
cncfmptc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ℂ ↦ 𝐴 ) ∈ ( ℂ –cn→ ℂ ) ) |
10 |
8 8 9
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ 𝐴 ) ∈ ( ℂ –cn→ ℂ ) ) |
11 |
2 4 7 10
|
cncfmpt2f |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ ( 𝑥 − 𝐴 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
12 |
1 11
|
eqeltrid |
⊢ ( 𝐴 ∈ ℂ → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) |