Metamath Proof Explorer


Theorem sub1m1

Description: Subtracting two times 1 from a number. (Contributed by AV, 23-Oct-2018)

Ref Expression
Assertion sub1m1 ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) − 1 ) = ( 𝑁 − 2 ) )

Proof

Step Hyp Ref Expression
1 id ( 𝑁 ∈ ℂ → 𝑁 ∈ ℂ )
2 1cnd ( 𝑁 ∈ ℂ → 1 ∈ ℂ )
3 1 2 2 subsub4d ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) − 1 ) = ( 𝑁 − ( 1 + 1 ) ) )
4 1p1e2 ( 1 + 1 ) = 2
5 4 a1i ( 𝑁 ∈ ℂ → ( 1 + 1 ) = 2 )
6 5 oveq2d ( 𝑁 ∈ ℂ → ( 𝑁 − ( 1 + 1 ) ) = ( 𝑁 − 2 ) )
7 3 6 eqtrd ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) − 1 ) = ( 𝑁 − 2 ) )