| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sub2cncf.1 | ⊢ 𝐹  =  ( 𝑥  ∈  ℂ  ↦  ( 𝐴  −  𝑥 ) ) | 
						
							| 2 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 3 | 2 | subcn | ⊢  −   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐴  ∈  ℂ  →   −   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 5 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 6 |  | cncfmptc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ℂ  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( 𝑥  ∈  ℂ  ↦  𝐴 )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 7 | 5 5 6 | mp3an23 | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝑥  ∈  ℂ  ↦  𝐴 )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 8 |  | eqid | ⊢ ( 𝑥  ∈  ℂ  ↦  𝑥 )  =  ( 𝑥  ∈  ℂ  ↦  𝑥 ) | 
						
							| 9 | 8 | idcncf | ⊢ ( 𝑥  ∈  ℂ  ↦  𝑥 )  ∈  ( ℂ –cn→ ℂ ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝑥  ∈  ℂ  ↦  𝑥 )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 11 | 2 4 7 10 | cncfmpt2f | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝑥  ∈  ℂ  ↦  ( 𝐴  −  𝑥 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 12 | 1 11 | eqeltrid | ⊢ ( 𝐴  ∈  ℂ  →  𝐹  ∈  ( ℂ –cn→ ℂ ) ) |