Step |
Hyp |
Ref |
Expression |
1 |
|
2times |
⊢ ( 𝐴 ∈ ℂ → ( 2 · 𝐴 ) = ( 𝐴 + 𝐴 ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − ( 2 · 𝐴 ) ) = ( 𝐴 − ( 𝐴 + 𝐴 ) ) ) |
3 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
4 |
3 3
|
addcld |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + 𝐴 ) ∈ ℂ ) |
5 |
3 4
|
negsubd |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + - ( 𝐴 + 𝐴 ) ) = ( 𝐴 − ( 𝐴 + 𝐴 ) ) ) |
6 |
3 3
|
negdid |
⊢ ( 𝐴 ∈ ℂ → - ( 𝐴 + 𝐴 ) = ( - 𝐴 + - 𝐴 ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + - ( 𝐴 + 𝐴 ) ) = ( 𝐴 + ( - 𝐴 + - 𝐴 ) ) ) |
8 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
9 |
3 8 8
|
addassd |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 + - 𝐴 ) + - 𝐴 ) = ( 𝐴 + ( - 𝐴 + - 𝐴 ) ) ) |
10 |
|
negid |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + - 𝐴 ) = 0 ) |
11 |
10
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 + - 𝐴 ) + - 𝐴 ) = ( 0 + - 𝐴 ) ) |
12 |
8
|
addid2d |
⊢ ( 𝐴 ∈ ℂ → ( 0 + - 𝐴 ) = - 𝐴 ) |
13 |
11 12
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 + - 𝐴 ) + - 𝐴 ) = - 𝐴 ) |
14 |
7 9 13
|
3eqtr2d |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + - ( 𝐴 + 𝐴 ) ) = - 𝐴 ) |
15 |
2 5 14
|
3eqtr2d |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − ( 2 · 𝐴 ) ) = - 𝐴 ) |